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Abstract 
This report is prepared by the University of Waterloo’s         
WATonomous student design team for the second year of the SAE           
AutoDrive challenge. This report showcases the progress made by         
WATonomous over the last year in preparing an autonomous         
vehicle (AV) for the second year of the competition. These          
accomplishments are presented in terms of hardware and software         
integration, as well as cost analysis. 
 
The approach presented in this paper builds upon the Year 1 design            
to accommodate for more complex autonomy challenges. A        
relatively low-cost approach is introduced in this paper with a focus           
on expandability to create a Level 4 self-driving vehicle, attempting          
to minimize the amount of design changes in the future by           
designing well for the early-mid levels of autonomy. 
 
The related areas of architecture discussed include sensor suite,         
sensor mounting and cooling, electrical, sensor fusion, perception,        
processing and path planning, associated costs and why those         
decisions were made. 
 
In the previous report, it was found that the low-cost solution           
without sacrificing performance is to extract information from a         
16-channel resolution LiDAR and a 41 FPS camera and utilize          
sensor fusion to obtain a spatial 3D, human eye representation of           
the environment. For Year 2, we amend our previous claims by           
including more sensors to further reduce the vehicle’s blind spots.          
The perceived environment combined with odometry and       
localization data provides the AV with all of the information          
needed in the early and later stages of autonomy. Sensor placement           
remains mostly on the roof of the vehicle to maximize the field of             
view (FOV). In addition, we’ve included a front bumper mount to           
ensure that the AV is able to see the entire surrounding           
environment. 

Introduction 
The motivation behind this report is to fulfill the current need in            
society for eliminating driving accidents, decreasing environmental       
pollution, and increasing human efficiency. Self-driving vehicles       
are one of the most sought-after engineering advancements in         
today’s society. They are often regarded as one of the most difficult            

engineering challenges due to the complexity involved in creating         
one. Human lives are at stake when operating an autonomous          
vehicle, and their multi-system sensor, electrical, and software        
dependencies in addition to handling complex real-life scenarios        
allow for many methods of failure. In cases of fault and failure,            
redundancy must be in place to avoid unsafe and undesired vehicle           
behaviour. 
  
Autonomy is a heavily researched topic of which many different          
approaches are available. However, finding the balance between        
cost and safety is one of the most difficult components of the            
design of an autonomous vehicle. The WATonomous AV system is          
designed to extract the full benefits from each of the primary           
sensors and fuse the data together to allow the AV to have a fully              
perceived environment. This results in lower computational need,        
lower resolution sensors, and as a result, a relatively inexpensive          
approach to designing an AV. 
  
The report goes in depth on the design of the middle stages of             
creating an autonomous Chevrolet Bolt EV and lays out the          
groundwork for bringing an autonomous car up to the SAE Level 4            
Driving Automation standard. To do this, an in-depth analysis is          
done on the AV’s mechanical, electrical, and software systems. 
  
For the mechanical system, an analysis of optimal sensor placement          
and protective techniques are laid out. A focus is made on FOV and             
accommodation for additional sensors, as well as different        
configurations. The electrical design is broken down, analyzing        
power consumption, optimal power system components and       
explaining robust electrical wiring measures that are important for         
ensuring the reliability of the autonomous vehicle when in         
operation. Additionally, the software architecture is detailed,       
including an analysis of sensor fusion to leverage the key features           
from all sensors. Methods that are robust for creating the AV’s           
environment, such as computer vision and 3D point cloud         
clustering, are analyzed and are used to perform mission planning.          
Motion control algorithms are then analyzed to properly navigate         
the AV from the environmental data.  



 

Concept Selection Review 

Hardware Design Selection 

Sensor Suite Selection 

The selected sensor suite was initially designed in Year 1 to be            
highly modular to accommodate additional system development. In        
year 2, the selection has vastly remained the same, although more           
units of each sensor were considered in our design. Redundancy,          
reliability and maximizing field of view were concerns in         
maintaining the AV’s safety system requirements. To fulfill these,         
the vehicle must use its sensors to determine the distance,          
geometric boundaries, and identities of surrounding objects, while        
also understanding the dynamics and relative position of these         
objects. 
 
Visual sensors considered include cameras, LiDAR and RADAR        
sensors. LiDARs are beneficial for detecting objects in a 3D spatial           
environment 360° around the vehicle. Cameras allow for feature         
extraction and classification of objects, and RADARs can detect         
velocity and displacements with high accuracy. Odometry and        
localization sensors considered were an INS/GNSS device, useful        
for obtaining accurate linear/angular acceleration and vehicle       
localization, as well as wheel encoders, useful for obtaining vehicle          
velocity. 
 
Each of the sensors listed above have areas of strength and           
weakness. A general comparison of each sensor type is shown in           
Table 1 below from a scale of 1 (weak) to 5 (strong). All attributes              
described in Table 1 were considered to select a suite that would            
strongly cover all aspects when combined and fused together. 
 
Table 1: General Comparison of AV Sensors on Performance 

Feature Camera LiDAR RADAR GPS IMU 

Range 2 3 4 N/A N/A 

Resolution 5 3 2 3 3 

SNR 5 3 3 5 2 

All-Weather 2 3 5 5 5 

Physical Size 5 2 4 3 3 

Data Stream 
(Resolution & 
Freq) 

4 5 2 3 3 

Cost 4 2 4 1 1 

LiDAR - Camera Combination Suite 

The drawback of a single sensor type suite is the required           
information processing to infer the full range of the spatial,          
dynamic, and semantic characteristics surrounding the vehicle. A        
way that allows for extracting the useful features of both types of            
sensors is to use a moderately channeled LiDAR with cameras.          
This way, the AV can extract the 3D object detection and distance            
features from the LiDAR and the classification abilities from         
cameras. 

Odometry and Localization Suite 

Having GPS and IMU sensors allows for fusion of multiple data           
sources, such as odometers and encoders, to decrease the         
uncertainty of the GPS location, acceleration and pose data. This          
approach proved quite useful to the path planning group and did not            
require much changing for Year 2. The primary changes in Year 2            
involve expanding the use of the GPS system to roughly localize           
the vehicle on the provided HD Map of the competition track. 

Sensor Suite Decision 

The final sensor suite selection in Year 1 consisted of 2 PointGrey            
Blackfly 2.3MP vision cameras, a Velodyne VLP-16 LiDAR, and a          
coupled Novatel PwrPak7-E1 GPS and IMU. For Year 2, the          
overall sensor types are the same with new variants of each added. 

Camera Suite Updates 

For cameras, 1 more Blackfly 2.3MP and 3 new BlackflyS 3.2MP           
cameras from FLIR will be added, for a total of 6 cameras. The new              
BlackflyS was chosen for its improved image resolution, as well as           
being a descendent of the original Blackfly 2.3MP, making driver          
integration simpler.  
 
PointGrey cameras were the type of cameras considered in Year 1,           
in particular, models that leverage Sony's Pregius global shutter         
CMOS technology which reduces motion blur at high speeds [1].          
Another critical criterion that PointGrey cameras fulfill is        
customizability. They provide full control over parameters such as         
shutter, gain, and white balance, all of which help in the tuning and             
performance of perception algorithms. Generally, this has proven to         
be a good choice, and so upgraded PointGrey cameras were          
acquired for Year 2 instead of another model.   
 
The decision to continue using the Blackfly line cameras instead of           
other PointGrey cameras came down to the frame rate. A higher           
frame rate is beneficial for reducing latency and increasing the          
responsiveness of object-tracking algorithms. For Year 2, the        
dynamic challenges require tracking both static and dynamic        



 

objects at relatively slow speeds, therefore the BlackflyS with 41          
FPS is more than suitable. 

LiDAR Suite Updates 

On top of the original VLP-16 LiDAR, 2 new VLP-16s and 1 new             
VLP-32C will be added. This is primarily to achieve a far higher            
fidelity 3D spatial representation and to cover major blind spots.          
The VLP-32C will replace the existing VLP-16 as the center          
LiDAR, while the 2 VLP-16s will be placed on the sides of the roof              
rack at a 45° angle to give a better view of the sides of the car. The                 
last VLP-16 will be mounted on the front bumper and serve to give             
a better view of the lower elevation in front of the vehicle.  
 
For Year 2 challenges, the LiDARs will be used to detect and            
obtain distances to 3D objects in the object avoidance and          
navigation challenges. The cameras will be used to detect, classify,          
and understand the many traffic signs and symbols, as well as           
parking spaces and lane lines to complete all three of the dynamic            
challenges. The 6 cameras will be used to maximize the field of            
view in the environment, as well as cover blind spots. The LiDAR’s            
superior range and point cloud clustering will allow the vehicle to           
see three dimensional objects further ahead. 

INS Suite Updates 

Finally, the Novatel GPS and IMU provide accurate location,         
velocity, and acceleration information, which is necessary for path         
planning and decision making, specifically to estimate the vehicle’s         
position and dynamic states at all times without compromising on          
low speed accuracy. A new key use of the INS in Year 2 is to assist                
in hardware time synchronization between sensors. This was        
achieved through the use of a high-accuracy reference clock signal          
provided by the GPS. Specialized software executes a best master          
clock algorithm to detect the reference signal based on the          
hardware identifier, clock quality, and variance. Routing this signal         
to the designated GPIO inputs on the cameras and LiDARs will           
provide the required time-stamping between the GPS clock signal         
and the slave sensors. 

Sensor Suite: Considerations for Future Expansion 

The current sensor suite provides the vehicle with significant         
sensing capabilities which are more than enough for Year 2. Since           
the sensor placement on the roof of the vehicle is customizable, the            
sensing configuration can be optimized for greater sensing        
capabilities. Expansion for future years will mainly focus on         
improving the Time Synchronization PTP network as well as         
including Continental RADARs for a greater FOV coverage. The         
addition of Continental RADARs will allow for object detection in          
varying weather environments, greater accuracy nearby detections,       
as well as high fidelity object tracking that is superior to LiDAR. 

Computing Platform 

Careful consideration was taken during the design of the electrical          
power architecture to make it expandable and adaptable. This was          
achieved, in part, by using specialized power components to         
provide centralized junctions that allowed for the connection of         
multiple components. Figure 1 shows a diagram of the structure of           
the computing platform. 
 

Figure 1: Sensor and Computing Signal Architecture 

 
 
Specifically, a 12 position circuit breaker block from Blue Sea          
Systems was used to distribute 12V DC to the various sensors and            
hardware elements that require it. This block can safely and easily           
allow for new components to be integrated into the current power           
architecture, including the competition scoring equipment. In Year        
1, the choice of a 16 port ethernet switch was motivated through a             
worst-case port usage estimation with 6 RADARs, 4 LiDARs, 1          
compute server connection, 1 INS, and 4 cameras, totalling to 16           
used ethernet ports in future years. For Year 2 the connections           
would be: 1 INS, 1 Computer, 5 LiDAR and 6 cameras, totalling            
13, which is sufficient. Extra hardware will be required for adding 6            
RADARS in Year 3. A 4 port PoE injector switch was acquired for             
the cameras in Year 1. Since 6 cameras will be used, 2 more single              
PoE injectors were acquired.  
 
Other considerations include a 1000W inverter with two 6-port         
power bars (resulting in a total of 12 AC ports to accommodate            
hardware that needs a 120V AC input) and a powered USB 3.0 hub             
to expand the USB capacity and range of the compute server.           
Custom hardware for the power distribution for the RADARs is          
being developed but will not be used in Year 2. While these choices             
vastly exceeded Year 1 requirements, they were chosen with future          
expansion and integration in mind. 
 
The Intel Compute Platform was integrated into this power         
architecture through a 12V to 24V DC-DC Converter. A liquid          
cooling unit was acquired to help with temperature management of          
the Compute Platform. This was necessary as the computational         



 

requirements of the autonomy software stack can easily cause         
temperature failures of the system if not properly regulated. The          
cooling unit communicates with temperature sensors installed       
inside the Compute Platform and manages the flow of coolant          
liquid into the system. The Compute Platform is connected to an           
ethernet switch for data communication between all of the sensors          
on the car. Three DB9 cables are routed inside the vehicle to the             
Compute Platform’s CAN-PCIe card, enabling the ability to send         
and receive CAN bus communication from the vehicle on the Low           
Speed, Chassis Expansion, and High Speed buses. This is the          
interface that allows controls to be sent to autonomously drive the           
vehicle. A PTP-PCIe card was acquired and integrated into the          
Compute Platform to assist in performing hardware time        
synchronization between the sensors. This will help significantly in         
developing an expandable and modular time synchronization PTP        
network to improve the quality, latency, and bandwidth of the          
sensor data pipeline. 

Sensor Capability Analysis 

Year 2 poses many newer, complex challenges that were not          
presented in Year 1, including dynamic obstacles and traffic flow          
control signals. Due to these new changes, a list of criteria was            
established to select appropriate models and number of sensors to          
use for the Year 2 dynamic challenges, including range, accuracy,          
sample rate, resolution, and cost. 
 
The maximum range of the sensors was an important factor to           
consider when selecting an appropriate sensor, as it dictated hard          
limitations in the vehicle’s coverage to sensing the environment.         
The accuracy of the sensor was also included as a critical criterion,            
as it directly determines the quality of measurements taken by the           
vehicle and thus affects the output of the quality of real-time           
vehicle software detection algorithms. The sample rate of the         
sensor describes how frequently a sensor’s data is able to submit           
new information to be used by software modules on the vehicle.           
This is especially important for the vehicle to detect such a dynamic            
and fast-changing environment, with the ability to detect sudden         
and possibly erratic changes in obstacles around the vehicle.         
Another important criterion chosen was sensor resolution, which        
determines precision of measurements and how much detail is         
present in the sensor output. Lastly, cost is an important factor in            
sensor selection, as it is ideal to have an affordable solution for            
autonomous driving and in the case if the system would become           
commercially available. 

Sensor Verification and Effectiveness 

All sensor testing and verification measures were performed at the          
vehicle level with the sensors mounted directly on the vehicle. This           

provided the means of verifying sensor capability that is         
constrained to the environment in which it will operate in.  
 
The first test involved a range test for the LiDAR, where a            
reflective board was held starting 100 m from the LiDAR. The           
vehicle slowly moved toward the board until about 2 m away.           
When replaying the data gathered during this test, no points were           
shown to have reflected off of the board until approximately 96 m            
away. Although this is slightly less than the VLP-16 specifications,           
it exceeds the minimum detection distance outlined in the sensor          
capability analysis by around three times the stopping distance.         
During this range test, an accuracy test was also performed. At four            
separate checkpoints, 100 m, 75 m, 50 m, and 25 m away from the              
reflective board, the distance from the board to the LiDAR was           
measured with a measuring tape. The accuracies at each distance          
are shown in Figure 2. Unfortunately, the accuracy level at 50 m is             
above the ideal value and hence this error factor must be taken into             
account within the software at longer distances. 
 

Figure 2: Horizontal FOV with uncertainties for LiDAR 

 
Similar LiDAR range tests were completed with the reflective         
board in the vertical direction to determine the vertical field of view            
of the LiDAR. The reflective board was in view until it exceeded            
about ±15° from the horizontal plane, which matches the         
specifications. Refer to Figure 3 for a visual representation of the           
vertical FOV. 
 

Figure 3: Vertical FOV for Camera and LiDAR 

 
 



 

The next test a small traffic cone object was held at a close distance              
to the camera, and gradually pulled further away. At the point           
where the object was viewed as less than 10 by 10 pixels in the              
image frame, the distance from the object to the camera was           
measured with a measuring tape. The resulting range of the camera           
is about 46 m, which exceeds the minimum stopping distance by           
more than 17 m. Next, the horizontal FOV was determined by           
measuring the angle at which an object just disappeared from view           
in the image frame. The resulting horizontal field of view is ±44°            
from the center axis. The measured range and horizontal FOV is           
shown in Figure 2. The same method was applied to measure the            
vertical FOV, resulting in a value of about ±32° from the center            
axis. The vertical FOV of the camera is pictured in Figure 3 above. 
  
The last sensor verification test involved the Novatel INS system.          
First, the time to first fix for a hot start of the GPS was tested,               
which took 4 seconds on average with low variance. Next, the           
susceptibility of the INS system to experience drift was tested.          
Starting and ending in the same location after a 5 minute drive in             
the route shown in Figure 4, the drift in the X and Y coordinates              
returned by the Novatel system was measured. In the x-axis, the           
drift was approximately 0.1598 m, and in the y-axis the drift was            
approximately 0.01348 m from the starting position. Both of these          
values are small enough such that they can be mostly attributed to            
inaccuracies of driving the vehicle to its exact starting position at           
the end of the route. 
 

Figure 4: Novatel INS Drift Test Route Map 

 

Hardware Integration Design Review 

Robust Hardware Integration 

Front Bumper Sensor Mount 

During the Year 1 competition, the team did not have any sensors at             
the front of the car. But to minimize blind spots and to improve             
lane detection, it was decided to have a fisheye camera and a            
LiDAR at the front of the car. To accommodate these sensors in the             

front of the car, a robust mechanical structure was designed and to            
ensure its safety and robustness, FEA analysis was carried out. 
 

Figure 5: Front Bumper Sensor Mount 

 
 
An 80/20 3*3 inch aluminium extrusion was used as the main           
mechanical platform for the different sensors. This extrusion was         
attached with the bash bar of the car using custom designed           
connectors. 
 
A camera mount with three degrees of freedom was designed for           
the fisheye camera. This mount was assembled onto the main          
mount structure. A custom designed camera shell was used to          
enclose the camera. An acrylic clear dome was used with the shell            
to ensure the view angle of the fisheye lens is not obstructed. 
 
The LiDAR mount consists of four distinct parts in its assembly           
(Pivoting bracket, Rotating Arm, Binding Barrel). However, an        
additional secondary part can be associated to this assembly (i.e.          
the horizontal 80/20 quad. extrusion attached to bumper). 
 
Two Pivoting brackets attach directly to the bumper extrusion via          
two screw hardware. These are speciality hardware consisting of a          
hex screw and sliding plate which allows for horizontal movement          
within the extrusion. However, the other side has holes in a circular            
pattern with each at a 200 difference. Furthermore, to achieve a tilt            
in between these degrees, another set of holes are drilled to achieve            
100 difference with respect to the outer holes. 
 
The rotating arm serves the purpose of holding the LiDAR and           
providing an extension from the body to allow clearance and avoid           
signal and mounting interference during the LiDAR’s data sweep.         
The arm is pivoted at one end of bracket using a binding barrel to              
fix it while it is set to a desired angle using a second barrel.   

Roof Sensor Mount 

In Year 1 competition, the roof rack was the only location where            
external sensors were mounted. A limited number of sensors could          
be mounted as only a small plate was attached to the top of the              
vehicle roof rails. The sensors were also fixed in place and could            
not be adjusted to satisfy the software team’s needs. In Year 2,            



 

many more LiDARs and cameras were added, and each sensor was           
placed on an adjustable mount.  
 
The sensors used for Year 2 include three cameras (two of which            
are normal angle FOV and one with a narrow FOV), three LiDAR            
sensors, and an INS system. All sensors have been mounted to the            
exterior of the vehicle, except the IMU component of the Novatel           
INS system. The IMU serves best when placed in the centre of the             
vehicle, it has thus been mounted inside the vehicle, near the           
vehicle’s centre of the mass.  
 

Figure 6: Roof Sensor Mount Top-level View 

 

NVH Robustness 

To make sure that front bumper mount is robust enough, FEA           
analysis was carried out. it was designed such that, it can carry the             
weight of an adult in static loading condition and 5G forces in            
dynamic loading condition to survive any shocks from potholes and          
bumps. Moreover, natural frequencies of the mount were identified,         
and it was made sure they do not coincide with natural frequencies            
of the car, which are 45 Hz and 124 Hz. 
 
The biggest challenge in mounting sensors on the roof rack was           
mitigating vibration. This is needed so the effects of bumps and           
other irregularities in the road are not transmitted into the sensor           
readings. For the first prototype mount design, the main plate was           
fastened directly to its mounting brackets (metal on metal contact)          
to get an initial understanding of the required damping for the           
sensors. In this configuration, camera and LiDAR images were         
stable. 
 
Although the original design was stable enough for its use case,           
rubber spacers were still added between the mounting brackets and          
main plate in the final sensor mount to reduce vibration that could            
otherwise damage sensors over long periods of operation.        
Stiffening members have also been added to the main plate such           
that road forces do not excite it at its natural frequency of 45 Hz              

and 124 Hz for the first and second natural frequencies          
respectively. 
 
FEA and vibrational analysis were performed to verify the         
structural integrity of the centre and side mounted LiDAR         
components when subject to vibrations that the average car may          
experience on a daily basis.  

Sensor Placement 

Figure 7: Sensor Placement Diagram 

 

 
Many changes were made with respect to difficulties completing         
some of the Year 1 challenges. The Year 2 design incorporates 3            
additional LiDARs and 4 additional cameras in order to reduce the           
sensor suite’s blind spots and for redundancy purposes. Similarly to          
the previous design, the IMU is placed near the center of mass of             
the vehicle, the GPS is mounted without any ceiling obstruction on           
the roof, and the front left (RFL in Figure 7) and front right (RFR)              
cameras remain for the use of stereo vision for depth perception. 
 
In order to address the previous blind spot extending up to 3m in             
front of the vehicle, the cameras were raised and angled down. This            
effectively reduced the blind spot to be within 1m of the vehicle,            
with the last meter to be addressed by the front bumper camera            
(BC). To compensate for the loss in long range vision, the new roof             
sensor suite includes a centre camera (RFC) equipped with a          
12.5mm focal length lens for long range object classification. 
 
As a result of raising the cameras, the centre VLP-32C LiDAR           
(RC), placed as such to make the most out of its FOV, had to be               
raised as well. Two additional VLP-16 LiDARs were mounted on          
the side of the vehicle tilted down (RL, RR), as well as one VLP-16              
on the front bumper (BC) to further increase redundancy and avoid           
collisions. 



 

Sensor Mounting 

80/20 Extrusions were attached to the roof rails of the vehicle to            
create a roof rack. This allowed for the ability to mount many more             
sensors compared to year 1. 
 

Figure 8: Roof Sensor Mount Front View 

 
 
The centre LiDAR was centered along the width of the vehicle and            
mounted in the front half of the vehicle length wise. To mount the             
four pillars of the stand to the roof mount frame, four gusset            
brackets were used. This allowed for adjustability in terms of the           
position of each pillar, which is a recognized benefit to using           
T-slotted framing components. Additionally, four more gusset       
brackets were attached to each column, and two 6-inch aluminum          
extrusion cut outs were mounted on each side, acting as the base for             
the tilting mechanism. A pair of 90-degrees pivot brackets were          
utilized to create adjustability in the preferred field of view for the            
centre LiDAR, which allows the software teams to adjust the tilt           
angle based on specific future needs. Lastly, a customized LiDAR          
plate was designed in order to attach the LiDAR to the tilting            
mechanism. The overall height of the centre LiDAR plate was          
increased from the year one competition, allowing the LiDAR to         
generate mapping views without obstruction of the pillars which         
support it. 
 
Two VLP-16 LiDARs were chosen to be mounted on the side of            
the vehicle. The sensors are placed in the middle of the vehicle            
lengthwise and suspended on an angle over the vehicle's B-pillar.          
Their placement enables a larger range of detection from the year 1            
vehicle, which incorporated a single center mounted lidar. These         
additional side mounted sensors allow for the detection of objects          
on the side of the vehicle, effectively reducing the size of the side             
view blind zones. 
 
The side lidars are also mounted using T-slotted extrusions and          
framing components. The primary extrusions are suspended off the         

top surface of the roof rack at a 45-degree angle upwards. They are             
supported by shorter upright extrusions, which are fastened to the          
primary extrusions using surface brackets. Surface brackets were        
also used to fasten the primary extrusions to the existing frame. A            
secondary extrusion is fastened perpendicular to the primary and         
allows for the mounting of the same lidar tilting mechanism, as           
previously discussed. The three LiDARs do not require any         
modifications or external housing to be temperature and weather         
resistant. 
 
Three cameras are mounted on to the front of the roof rack equally             
spaced across its width. The left and right cameras use a normal            
FOV angle lens. The four aluminum extrusions oriented vertically         
act as pillars of the mounting structure and are directly bolted onto            
the base which is fastened to the roof rack. Gusset brackets are            
attached to each extrusion which act as a support for the two            
aluminum extrusions that lay horizontally. These two extrusions act         
as a support structure for the camera plate which is fastened onto            
them. The plate has slots on the both side through which it is             
attached to the pair of aluminum extrusions which allows for          
adjustability in the forward and backward direction. Although this         
adjustability can currently only be executed manually, in the future          
this adjustability is meant to be motorized. Finally, the camera and           
lens are mounted on to a copper block heat sink and a 3D printed              
stand respectively. Both of which are directed bolted onto the          
camera plate.  
 
As shown above, the mounting design for side cameras is very           
similar to the front camera design. However, unlike the mounting          
of the front camera, the side camera mounting includes a pair of            
90-degrees pivot brackets which allows the cameras to be tilted and           
fixed at varying angles as required by the software team.          
Furthermore, the 3D printed stand for the lenses differs         
geometrically from the one for the center camera mounting as the           
dimensions of the lenses and side cameras is different than that of            
the center camera. 
 
The two cameras are enclosed in custom 3D printed housing with           
an opening in front for a polycarbonate sight window. Both the           
sight window and the bottom of the housing are gasket-sealed to           
provide waterproofing. Since the LiDAR is intended for automotive         
use with an IP67 rating, this level must also be sufficient for            
protecting the cameras, inspiring the decision to create a camera          
housing design that achieves IP67. This means that the camera          
housing must be dust tight and watertight down to a 1000 mm            
depth for 30 minutes. Gasket material is selected with temperature          
in mind, and fastener spacing, and torque specs are calculated to           
compress the gasket by the vendor’s recommended amount of 25%.          
Additionally, the cameras are sensitive to heat with a maximum          
operating temperature of 45°C. To assist in cooling the cameras,          



 

they are each mounted on top of a copper plate that will act as a               
heat sink. The camera covers are also covered in material that           
reflects light such that the plastic casing does not absorb heat from            
the sun, keeping the cameras cooler. 
 
 
 
 
 

Figure 9: Exploded View of Camera Housing 

 
 
A metal plate is along the rear of the vehicle. This metal plate             
allows for the mounting of various antennas such as the scoring           
antenna, and the GPS unit that is used. Standard fasteners are used            
as these units are not susceptible to vibration. A blue autonomous           
light is also mounted using standard fasteners. This light was          
necessary for the competition.   

Electrical Integration 

A robust electrical integration of the sensors was ensured in a           
variety of different ways. First, the wiring of the entire electrical           
sensing subsystem was methodically planned out and executed.        
Great care was taken to source ethernet cables (RJ45 CAT6) with a            
high-quality mechanical clip mechanism to ensure ethernet       
connections cannot become dislodged or disconnected during       
vehicle operation. Additionally, the slack and specific path        
throughout the car of the various cabling was managed carefully to           
ensure any shifting during operation would not result in any          
tension, compression, or stress of any kind on the cables. This was            
achieved through carefully routing cables according to a routing         
plan the electrical team created, using a combination of zip ties,           
cable clips, cable glands and zip tie mounts to secure the cables            
running through the car and around the server rack. Any custom           
sensor power and data wiring was concealed with coaxial cables          
and rigid wiring enclosures to ensure secure and sheltered         

connections. For our LiDAR cabling, we ensured strong        
connections between the LiDAR sensors and interface box and         
added secure casing that allows us to debug connection problems          
and measure power consumption whilst guaranteeing flexibility to        
the system’s cabling. To secure cables that cross the interior and           
exterior of the vehicle through the roof, watertight cable glands          
were used to eliminate water leakage. 
 
The power system was also designed in such a way as to ensure             
connections are safe and secure, and important components are         
protected through the use of circuit breakers. A breakdown of the           
power system architecture can be seen in Figure 10. Initially, the           
12V DC input from the vehicle is protected by a marine battery            
switch, ensuring there are no live wires or buses anywhere within           
the power architecture except at that single point of contact. From           
there, the power is distributed to a 12V DC, 150A busbar (with a             
parallel ground bus bar), that connects to the three main power           
subsystems: the DC-DC converter for the compute system, the 12V          
DC circuit breaker block for sensor components, and the pure sine           
wave inverter to generate 120 VAC. The sine wave inverter and           
DC-DC converter are both protected by separate, properly-sized        
circuit breakers, while the 12V circuit breaker block allows for each           
outgoing channel to be protected using small, modular circuit         
breakers. Most devices connected to the 120VAC bar will have          
integrated certified DC rectifiers to ensure a reliable and safe DC           
input. This is all done to ensure that in the event of an electrical              
failure or short circuit condition, the circuit breaker for that          
individual component will disconnect it from the overall system,         
and the rest of the power system and the vehicle’s battery system            
will remain isolated, and thus unaffected. 
 

Figure 10: Power System Architecture 

 
 
Finally, the electrical platform also ensures robustness through the         
sizing of the power wires that connect the various components          
together. Worst case current and power calculations have been done          
on all stages of the power architecture, and appropriate gauges and           



 

lengths of wire have been selected and implemented to ensure that           
they are rated for greater than the worst-case current draw. This           
ensures that there is minimized voltage drop in the power wiring, as            
well as reducing the risk of any catastrophic failures that might           
occur during a short circuit condition, such as an electrical fire. 

Compute Platform Integration 

Serial Data Vehicle Integration 

Equivalent to Year 1, a PEAK PCAN PCI Express FD card is used             
to create a fast and robust serial connection from the Intel Crystal            
Rugged to the vehicle via the CAN communication protocol. A          
baud rate of 500,000 bits per second is used on the High Speed and              
Chassis Expansion buses to achieve fault tolerance. The Low Speed          
bus uses a baud rate of 33,000 bits per second due to the lower              
priority of the traffic on this bus.  
 
An ethernet expansion card allows higher ethernet bandwidth        
through the 8.0 GHz PCIe 3.0 bus lanes and enables external           
hardware and software time synchronization. Figure 11 shows a         
general layout of the signal architecture inside the Crystal Rugged.  
 

Figure 11: Crystal Rugged Signal Architecture 

 
 
In addition, the Vector VN1640A bus interface hardware tool is          
also connected to the CAN buses to act as a secondary method to             
communicate with the vehicle for prototyping purposes. 

Computing Platform Cooling Strategy 

To source the liquid cooling loop for by the Crystal Rugged, the            
thermal output of the various components requiring cooling in the          
Crystal Rugged has been considered, as shown in Table 2. The total            
thermal output of the computing platform in the current state was           
found to be 390 W. Accounting for the fact that another FPGA will             
be added in the future as well as other high heat output electrical             
devices, including power converters, the Koolance EX2-1055       
Computer Liquid Cooling System was chosen as the liquid cooling          
solution. It should be noted that this is an all-in-one unit and            

provides up to 900 W of heat dissipation. Additionally, this is           
different from the 1450 W ALX-1450-P400 Modular Liquid        
Cooling System recommended by Intel. This decision was made as          
the former is half the cost of the latter, meets the design            
specifications, and consumes less power. Additionally, the liquid        
cooling unit is equipped with three temperature sensors at the Intel           
Xeon processors and Arria 10 FPGA Development Kit to monitor          
the compute systems temperature at critical regions. If any of these           
sensors exceed 55 °C, an interrupt signal is sent to the CPU to             
safely shutdown the system and avoid damaging components.  
  



 

Table 2: Thermal Output of Computing Components 

Component Qty Max 
Temp. 
(°C) 

TDP 
(1 unit, W) 

Extended 
TDP (W) 

Intel® Xeon® 
Processor E5-2699 

v4 

2 79 145 290 

Arria 10 FPGA 
Development Kit 

1 45 100 
(Dependent on 

usage) 

100 

Total    390 

 
It is known that mixed metals are being used in the liquid cooling             
setup within the Crystal Rugged, which means that using a          
water-based coolant will result in corrosion within the loop. As          
such, it has been decided that the Koolance 705 Electrically          
Insulative Liquid Coolant is the best option for coolant, as it           
contains corrosion inhibitors and is known to be used for 2-3 years            
before requiring replacement. This coolant, while more expensive        
compared to alternative options, is expected to save time and          
money over the duration of the competition, requiring infrequent         
refills and maintenance. An additional benefit of the electrically         
insulative coolant is that the cooling system can be placed above           
the other electronics without concern. The top of the computing          
rack is the optimal place for the cooling system as it provides an             
open area for the fans to vent and allows for quick coolant refills. 

Computing Platform Mounting Strategy 

The compute rack was designed in Year 1 as a 3-level structure            
constructed using thin-walled aluminum tubing attached together       
by aluminum gussets and rivets. The main benefits of this          
construction technique were that it allowed for a very lightweight          
and cheap frame while also making use of exclusively off-the-shelf          
components. By using readily available framing, design and build         
time is cut down immensely. Acrylic sheets form the mounting          
surface for the electronics on each layer. Heavy electronic         
components that do not need to be accessed or serviced frequently           
are placed on the bottom tier, which is sunken into the trunk. The             
Crystal Rugged, radiator, switches and other critical components        
are placed near the top so that they can be easily serviced during             
testing. The exact component placement has been determined in         
CAD and the compute rack has been sized such that empty spaces            
are minimized. 
 
Based on the review and analysis of the previous rack, a need was             
found to improve port accessibility while increasing the storing         
capacity of the rack. Currently, the hardware mounted on the lowest           
shelf is virtually inaccessible. Also, since the Crystal Rugged is          
front facing with ample wiring and tubing connections, the midspan          

and other heavily used network devices require effort and time for           
interaction while testing. As a result, a new design has been           
modeled for this purpose and is shown below.  
 

Figure 12: Compute Platform Year 2 Mount Design 

 
 
It is made of off the shelf items including 8020 square extrusion of             
size 1x1in. The bottom plate holds most of the electronics, while           
the top plate holds only the radiator. The plate on front is used to              
mount the kill switch, USB hub and Velodyne interface box. This           
simplifies interaction from both the front and the sides. All the           
wiring has been moved to the side by mounting the crystal on the             
bottom plate clamps. A dedicated shelf for network switches allows          
for easier alteration of sensor configurations. All the other hardware          
stored below the top plate can be accessed by moving it on sliders             
when required. A damping pad was also introduced to dampen any           
induced vibration during motion. 

Power Consumption 

Power consumption on the vehicle is highly restricted by the          
capacity of the 12V battery.  The 60 kWh battery supplies a range            
of sensors, radiators, switches, and the compute platform. To ensure          
that the battery only needs recharging at reasonable intervals,         
power consumed had to be strategically restricted and regulated.         
This is to ensure that sensor scalability will not compromise battery           
life in lieu of greater precision. From a power system perspective, it            
is approximated that the total rated power consumption limit is 1           
kW including power consumed by equipment in the front of the car.            
Hence, to limit the scope to additional equipment non-native to the           
vehicle, it is safe to say that our suite should consume no more than              
800W of power. Initially, calculations were done based on         
equipment datasheets and technical information to determine the        
estimated worst-case loading. Later, these values were validated        
through experimental measurements on the built power system.        



 

Both the estimated power consumption breakdown and measured        
values are presented in Table 3 below. 
  



 

Table 3: Power Consumption by Component 

Component Estimated Power 
Consumption (W) 

Average Measured 
Power 
Consumption (W) 

DC-DC Converter 689.00 505.20 

Compute Platform 659.00 - 

900W Radiator 30.00 - 

AC Inverter ~ 108.70 ~129.98 

Network Switch ~ 8.40 - 

Total 6 x PoE Injectors ~ 40.80 - 

Total for 6 x Cameras 15.00 (maximum) ~ 12.48 

Total for 4 x Velodyne 
VLP-16 LiDARs 

32.00 ~ 28.80 

Total for 1 x Velodyne 
VLP-32 (including interface 
box) 

~12.50 - 

Circuit Breaker Block 82.00 ~ 52.84 

USB 3.0 Hub 5.00 - 

INS/GPS System 5.00 (1.80 Typical) - 

Total for 6 x Continental 
ARS430 Radars 

72.00 ~ 46.12 

Total (worst case) 879.70 ~ 688.02 

 
There are three major power consuming modules in the design:          
DC-DC Converter, Sensors & AC Inverter, and Circuit Breaker         
Block. The DC-DC Converter powers the compute platform and         
liquid cooling radiator in turn. The sensors used are powered          
through the AC Inverter module which also powers the AC          
components in the car. Finally, the Circuit Breaker Block powers          
the other DC components in the car. 
 
For design purposes, our system has been optimized with         
scalability in mind. Thus, the design supports sensors with the          
quantities detailed in Table 4. 
 
 
 
 
 

 
 

Table 4: Maximum Number of Sensors Supported 
Component Name Quantity 

Supported 

Velodyne VLP-16 LiDAR 4 

Velodyne VLP-32C LiDAR 1 

Continental ARS430 Radars 6 

Blackfly 2.3 MP IMX249    
Camera 

3 

Blackfly 3.2 MP IMX265    
Camera 

3 

 
It should be noted that while the maximum power draw          
theoretically exceeds 800W, this is only the worst case based on           
documented specifications. However, these values are by far away         
from the practical maximum power readings observed when testing.         
Should there be a need to reduce power consumption further,          
sensors impact analysis on both power and precision achieved can          
be conducted to decide on which sensors are to be removed for            
performance. 
 
The main transition between power consumption in Year 2 from          
Year 1 is sensor scalability. In Year 2, we scaled up our LiDAR             
suite as well as our cameras as mentioned in the Hardware Design            
Selection section of the report. Values presented in Figure 11          
represent a comparison between the power consumption (both        
theoretical and experimental) in Year 1 and Year 2. In particular,           
using experimental values, there was only a 5.1% increase in power           
consumption from Year 1 to Year 2. After analysing the impact of            
the additional sensor, it has been determined that the vehicle would           
be able to power the added sensors without compromising our          
power restrictions mentioned above. 
 

Figure 11: Power Consumption Analysis by Year 



 

 
For the compute platform itself, a stress testing program was run to            
achieve 100% load on all cores of the Intel Xeon processors as well             
as the Arria 10 FPGA Development Kit before the current was           
measured, and this resulted in a 500W load on the vehicle, which is             
much less than the theoretical estimate of 689W. For the AC           
Inverter, values may seem much higher than the theoretical         
worst-case scenario. However, this is due to the power drawn by a            
monitor connected which is used during development on the         
compute platform. Despite that, the measured values validate our         
assumptions about the estimated power draw. Hence, due to the          
available headroom for hardware integration (for example, adding        
additional cameras to our suite), the power consumption of the          
vehicle is optimized for sensor scalability. 

Bill of Materials 

Cost Analysis 

With generous sponsorship and additional external funding, the        
team was able to procure numerous pieces of physical equipment          
and software to ameliorate the implementation of the design. The          
costs summary and a detailed bill of materials (BOM) can be found            
in Appendix A. In summary, the total cost of the vehicle, sensors,            
computing platforms, mounting and cooling and other       
miscellaneous components added to the vehicle stands at $USD         
132,789.15. Similarly to Year 1, the largest portions of costs fall           
under the vehicle itself, followed by computing platforms, then         
sensing. Cost efficiency determined by performance-to-cost      
analysis and quality assurance were both crucial factors in each          
purchase decision to ensure optimal performance. 

Velodyne VLP-16 LiDARs 

In Year 1, the VLP-16 LiDAR was determined to be the most            
cost-effective sensor given its 360°, 3D distance and calibrated         
reflectivity measurements. In Year 2, the team was the recipient of           
generous donations of 3 additional VLP-16s and a VLP-32C.         

Although the HDL-32E and HDL-64 were considered for their         
higher resolution and increased FOV, it is possible to design similar           
solutions using the sponsored sensors. 

Blackfly 3.2MP GigE Camera 

Since Year 1, PointGrey released a new Blackfly model featuring          
the IMX 265 CMOS and a higher image resolution at the same cost             
[1]. While the minor FPS drop was considered, the advantages of           
the new Blackfly model would allow for significant image         
resolution improvements at long range, a key feature for the Year 2            
challenges. 

Sensor Mounts 

The Roof Rack and the Front Bumper mount were both designed           
with cost efficiency in mind. Both mounts were made to be highly            
adjustable in order to try out various sensor suite configurations,          
saving cost through reusability. Additionally, some parts were        
listed by Canada’s Special Import Measures Act, and as a result,           
another criteria of design was to be sourced from Canadian          
suppliers at reasonable cost [2]. 

Software Design Review 
This section will review the design of WATonomous’ software         
modules. 

Software Architecture 

The Year 1 software architecture was designed with consideration         
for low-level, embedded software and higher-level,      
decision-making software. A data pipeline was designed to describe         
the interactions between different components of the autonomous        
vehicle’s software stack. These components, referred to as nodes,         
were implemented as standalone executables using the Robot        
Operating System (ROS) framework. In Year 2, the functional and          
organizational advantages of decoupling our software tasks with        
respect to the ROS nodes are still leveraged, allowing our          
production and consumption of data to benefit from built-in         
concurrency, open source libraries and packages for robotic        
applications within the ROS community. The general software        
architecture is shown in Figure 12 below. 
 

Figure 12: General Software Architecture 



 

 
 
This effectively caused the formulation of subteams that contribute         
to the software architecture. These software subteams are broken         
down as follows. 
 
Sensor Fusion 
The Sensor Fusion subteam ensures that the raw data from various           
sensors is accurate, filtered and synchronized before it is provided          
to the software subteams. 
 
Perception 
Perception primarily deals with computer vision algorithm       
development required to accurately detect and classify objects of         
interests, such as pedestrians, cyclists, road markings and traffic         
control objects. 
 
 
 
Processing 
Processing is responsible for tracking the positions of objects         
identified by Perception, fusing the detections and classifications        
from Perception into a unified internal representation of the car’s          
environment, as well as localizing the vehicle onto the provided HD           
Map. 
 
Path Planning 
Path Planning uses the environment it receives from Processing to          
plan the trajectory and velocity the car should travel based on the            
appropriate behaviour when encountering pedestrians, cyclists, road       
markings, traffic control objects. This subteam also provides the         
waypoint management system as well as the controllers necessary         
to maintain the target path. 
 
Embedded Actuation (Vehicle Output) 
This subteam is the endpoint between the software systems and the           
existing systems in the vehicle. Their main task for the software           
architecture is to provide the interface between the Path Planning          
controllers and the vehicle CAN bus. 
 

User Interface 
The User Interface subteam is tasked with producing a graphical          
interface to allow an end user to interact with the autonomous           
vehicle, in addition to being able to show an overview of the            
vehicle’s status. Additionally, this component provides      
visualizations for each node’s output for debugging purposes. 
 
There are additional subteams that do not have their own ROS node            
as their work is not directly required for the vehicle to be            
autonomous. These are broken down as follows: 
 
Global Mapping 
In Year 2, Global Mapping remains a subteam focused on meeting           
the Global Mapping challenge: providing an application allowing        
for location search as well as routing from a point A to a point B. It                
is expected to integrate this module into our global path planner by            
Year 3. 
 
Simulation 
In Year 2, the Simulation subteam’s purpose is to meet the           
Simulation challenge’s requirements: incorporate our autonomy      
components into the simulated agent’s behaviour within provided        
simulation environment. 
 
DevOps 
The DevOps subteam is in charge of ensuring that the various           
modules and components created by the subteams are able to be           
brought together. Tools are built to facilitate continuous integration         
and development environment setup.  
 

Sensor Fusion Algorithm and Computer Vision 

The first step in this pipeline is perception. The perception team           
consumes processed images from the cameras mounted on the         
vehicle to produce a data representation of the forward road.          
Overall, there are four significant road features in the challenge:          
roadlines, traffic signs, traffic lights, and other 3D objects.  

Roadline Detection 

Roadlines include lane lines, crosswalks, road boundaries, stop        
lines and parking lines. These detected roadlines are used to          
construct a map of the vehicle’s surroundings, and to help the           
vehicle make informed decisions in its environment. To detect road          
lines, an image taken from the left camera is resized to 512 x 512              
pixels and are inputted into a semantic segmentation neural network          
that produces a binary output image. The binary image highlights          
locations of road lines in the image, where pixels corresponding to           
road lines are white and all other pixels are black. A neural network             
approach was selected instead of heuristic computer vision        



 

approaches because the neural network approach is more robust to          
changes in lighting conditions and in roadline colors, and will          
reduce the need for heavy calibration work to be done once the            
team arrives at the competition site. After numerous testing and          
tuning, the SegNet semantic segmentation model with skip        
connection was selected as the neural network to be used due to its             
high performance in intersection over union (IoU) when tested on          
validation datasets [3]. The IoU defines the overlap percent         
between a ground truth label and a predicted label, and is a metric             
used to quantify the similarity between computer vision predictions         
and truth labels. 
 
After the binary roadline image is generated, the next step is to            
perform a bird’s eye view (BEV) image perspective transform to          
restore proper proportion and achieve constant scale in both image          
width and height directions. Distances in real-world space to the          
detected road lines can be then calculated. To perform a BEV           
transformation, a rectangle is created on the flat ground in front of            
the camera, which will appear to be a trapezoid. The four vertices            
of the captured rectangle are then projected onto a rectangle in a            
destination image using the OpenCV perspective transform method        
[4]. A conversion scale from pixels to meters can be applied in both             
x and y directions to obtain real world distances.  
 
After BEV transform, the Probabilistic Hough Transform is applied         
using the OpenCV library to detect straight road lines, including          
stop lines and parking spot lines [5]. The straight roadlines are then            
further classified into stop lines and parking lines using the slope of            
the straight lines. A polynomial regression algorithm is used to          
localize and fit curved lane lines in the image. Figure 13 illustrates            
the road line detection software pipeline. 
 
 
 
 

Figure 13: Roadline Detection Software Pipeline 

 

Image Object Classification 

Another challenge tackled by the perception modules of the vehicle          
involve both detecting and classifying objects in an image. Objects          
of interest for the vehicle to detect include traffic signs, traffic           
lights, and pedestrians as these objects greatly influence the future          
path planning behaviour of the vehicle. Object detection neural         
networks were chosen to localize and detect objects of interest, due           
to their robustness and invariation to image noise and ability to           
learn features of objects. 
 
Due to the broad scope of the object classification problem, the           
challenge was divided into several subproblems, with different        
neural network architectures defined for different use cases of         
detecting specific objects. Traffic signs were detected using Single         
Shot Detector (SSD) with ResNet-50 feature extraction method [6].         
This architecture was chosen for its lightweight computation and         
fast inferencing speed, as well as its accuracy. Traffic lights and           
pedestrians were detected using the YOLOv3 neural network        
architecture [7]. The YOLOv3 architecture was chosen for its fast          
real-time inferencing speed, as the detection requirements for traffic         
lights and pedestrians was strict and needed fast update rates to           
track objects quickly. Regardless of the neural network        



 

architecture, each object detection network returns the pixel        
bounding box coordinates and classification probabilities for each        
object detected in the image. These bounding box coordinates are          
sent to the Processing software modules to be used for further           
cleaning and filtering of detections. 
 
A mix of open-source datasets and data synthesis were used in           
training the object detection networks. For training a YOLOv3         
network in detecting pedestrians, the KITTI and the Tsing-Daimler         
Cyclist Detection Benchmark datasets were used. Due to the         
limitation in data on specific Michigan traffic sign and light models           
required by the Year 2 Challenges, synthetic data was used to train            
the neural networks. The Cut, Paste and Learn method is the           
primary method of generating new data, and works by injecting          
different objects cut-outs to randomized locations in background        
scenes, generating automatic label annotations in the process [8].         
Data augmentation is utilized to add further variation in the data to            
further represent real-life conditions, including illumination, motion       
blurring, object scaling, rotation, color variations, and pixel-wise        
noise. The amount of variation of the augmentations will depend on           
real-life data and must be estimated to best represent real-life data.           
Background images are provided by the BDD100K (Berkeley        
DeepDrive) dataset to provide realistic urban environments as taken         
by the vehicle’s cameras. Figure 14 shows an example of the data            
synthesis method. 
 
Figure 14: Example of Image Synthesis of Brightness, Motion 

Blur, and No Data Augmentation (Top to Bottom) 

 

LiDAR Object Detection 

To detect obstacles in 3D space for the vehicle to react to, a             
conditional euclidean clustering approach is used to tackle this         
problem. A 3D point cloud containing all points of the environment           
detected for a single frame captured is sent to the clustering method            
to be segmented, with any points from the ground removed before           
further analysis. This algorithm uses a flood-fill approach to create          
clusters by searching locally throughout the LiDAR point cloud to          
find points that are defined to be nearby neighbours to each other            
[9]. Constraints for defining the closeness of each point includes the           
physical euclidean distance, smoothness, and color similarity [9].        
After all clusters defining different objects in the point cloud have           
been found, 3D bounding boxes are drawn around each cluster and           
outputted as detected objects to be used for further processing. 

High Level Data Fusion 

High Level Data Fusion (HLDF) is the module responsible for the           
consolidation of the discrete data sources from the Perception         
modules into a single data stream, as well as association between           
different types of objects. HLDF takes as input the obstacles and           
road lines detected by the various Perception modules. It produces          
as output a ROS message, to be consumed by the Object Tracking            
module, that contains all relevant data from Perception, such as          
roadlines and obstacles. HLDF fuses bounding boxes together from         



 

Perception over each individual frame, and also performs roadline         
matching and fusion.  
 
For roadline fusion, the incoming roadlines are described as a          
polynomial with 2 points describing the end points of the detected           
line. HLDF maintains a current best estimate of the lane lines based            
on previous seen lane lines. Incoming lanes are then matched with           
the existing lanes by subtracting the polynomials describing both         
lanes and integrating the remaining polynomial over the area for          
which the polynomial is valid. This gives an area which describes           
the closeness of the 2 road lines. Roadlines are then matched based            
on which polynomials have the minimum area between them.         
Subtraction and integration of polynomials is computationally       
efficient, and the resulting metric provides accurate lane matching         
for 93% of detected lane lines from data taken from the year 1             
competition. 
 
HLDF also performs bounding box association within individual        
frames. Separate bounding boxes are provided from both image and          
object-based detection methods and must be associated. The        
LiDAR provides unlabelled data, while the cameras provide        
labelled data. As a result, class is not taken into account for data             
association. The data association is performed solely on the basis of           
pose and dimension of bounding boxes. Any bounding box pairs          
whose centroids are further than a set threshold apart, as an           
efficiency measure, are ignored as possible candidates for        
association. For any classified bounding boxes, the Intersection        
over Union (IoU) score is then computed for any unclassified          
bounding boxes with centroids sufficiently close to it. The         
unclassified bounding box with the highest IoU is then considered          
associated with that classified bounding box. The 2 bounding boxes          
are then averaged together, and the label from the classified          
bounding box applied.   

Object Tracking 

After fusion and data association has been performed in HLDF, the           
current environment is sent to the Object Tracking module. Object          
Tracking is responsible for estimating velocity and acceleration for         
any relevant objects. It takes as input the output object messages           
from High Level Data Fusion, and outputs another environment         
message, with updated velocity and acceleration fields, to the Path          
Planning modules. 
 
Object tracking receives input from High Level Data Fusion. It then           
takes the received bounding boxes, converts their position relative         
to the car to an absolute position, and attempts to match bounding            
boxes using a Euclidean distance heuristic. A Euclidean distance         
heuristic was chosen for ease of computation and use. Euclidean          
distance may be unsuitable for future years, when scenes may          
become more cluttered, but when tested in sparser scenes like those           

expected in competition, it performs accurately. If there is no          
bounding box within a set distance threshold to match to, then the            
object is registered as a new object. Once all existing tracked           
bounding boxes have been matched to new measurements, extra         
checks are performed to see if an object is still relevant, or if it was               
a false positive, based on how many frames it has been since the             
object was last seen, and how many frames it has been seen in total.  
 
As each object is detected and added, an associated Extended          
Kalman Filter (EKF) is also created. After matching occurs, the          
EKF takes as input the updated position measurement of any          
detected object, and uses that to estimate the true position, velocity,           
and acceleration of the object. An EKF was used due to the known             
robustness of the algorithm for estimation in this type of task, as            
well as the relatively low computational load as compared to other,           
more complicated object tracking methods. The positions,       
velocities, and accelerations of all tracked objects are then added to           
an environment message and sent to the Path Planning modules for           
use.  

Localization 

The localization aspect of the pipeline estimates the car’s pose on           
the HERE HD map and to generate a local map of the car’s             
surroundings. Both outputs are passed directly to the path planning          
module, where the behavioral planner will use the generated map to           
set the vehicle’s goal and the costmap will be constructed          
accordingly. Considering how important it was to accurately follow         
the roads, estimating the car’s location in relation to the HERE map            
is a main focus of the algorithm. 
 
The localization algorithm uses four sources of input: LiDAR,         
IMU, GPS, and lane detections from the perception module.         
Localization also uses 2 third party packages, in Google         
Cartographer and the ROS “robot_localization” package. The       
LiDAR, IMU, and GPS data are passed to Google Cartographer          
which generates an occupancy grid of the car’s surroundings and a           
location estimate. This estimate and the lane detection information         
are then passed to the “robot_localization” package to be integrated          
into a final output.  
 
LiDAR data was necessary to allow Cartographer to generate the          
occupancy grid. It also significantly contributes to the accuracy of          
Cartographer’s estimate. To use the full LiDAR scan, we run          
Cartographer in 3D mode which necessitates the use of the IMU, as            
Cartographer requires IMU data to initialize the car’s orientation.         
The GPS data and lane detection source are also used to help ensure             
the location estimate agrees with the HERE map. 
 

Figure 15: The Localization Software Flow 



 

 
 
Cartographer and the “robot_localization” package were selected to        
be able to use all of the available inputs. The “robot_localization”           
ROS package was selected to augment the Cartographer estimate         
with the lane detection information. When tested with internal data,          
Cartographer was also found to have the highest accuracy, and ran           
in real time, as opposed to other considered options. 
 
After receiving the location of the road centre line from the           
perception modules, our algorithms adjust our current location        
estimate to agree with this input. The new location estimate is           
created by shifting the car’s position closer to or further from the            
corresponding lane line in the HERE map. It also recalculates the           
car’s orientation depending on orientation of the lane line relative          
to the vehicle. 

Mission Planning Algorithm 

The motion planning algorithm is addressed by two subcomponents         
of Path Planning: Global Planning and Local Planning. In Year 3,           
Global Planning will happen at the HD Map level; the end user            
would provide some destination and the global planner will route          
from the vehicle’s current position to the destination. For Year 2, it            
is instead asked to integrate a waypoint system; the global route           
consisting of waypoints encodes the navigation information       
required for the vehicle to reach its destination. Once the global           
plan is completed, the Local Planning module is responsible for          
planning a path within the local environment, i.e. the region of the            
world that the vehicle’s sensors can perceive. 
 

Figure 16: The Motion Planning Software Pipeline 

 

Global Planning 

The purpose of the Global Planning module is to precompute          
relevant data for each Year 2 challenge given the HD map. The            
result of this module is an approximate list of goal states used by             
the Local Planning module. For Year 2, the global plan is           
determined by either traffic signs, such as in the case of the traffic             
control challenge, or by waypoints. When given waypoints, the         
global planner pre-computes a list of turning directives using the          
HD Map, this list is subsequently used to determine the lane the            
vehicle should follow. 

Local Planning 

Given the vehicle’s perceived environment from Processing and the         
desired lane from the global planner, the Local Planning module          
finds the optimal path forward within the environment while         
abiding to traffic constraints. 



 

Behavioral Planner 
 

Figure 17: Behavior Planner’s Finite State Machine 

 
 
The first step to create a path with the given environment from            
Processing is to decide on a goal line (which is a line segment,             
velocity, and acceleration), that lies somewhere in the provided         
environment. The goal line decision algorithm relies on a finite          
state machine (FSM) to keep track the current state of the vehicle.            
The vehicle’s state includes attributes such as acceleration and         
maximum speed. The Path Planning team chose to use a FSM to            
keep track of vehicle state since it allows state transitions to be            
dependent on both current state and an external trigger.         
Specifically, the FSM transitions are triggered by certain        
characteristics of the consumed env struct (environment structure);        
for example, an env struct with a vehicle velocity of zero would            
transition from the slowing state to the stopped state. Additionally,          
the transitions are also triggered by predefined internal triggers,         
such as a timer that triggers when the vehicle has been at the stop              
line for two seconds. Goal lines are generated based on the current            
FSM state and a newly consumed env struct. For example,          
FSM(stopped) + env_struct(open_road) would produce a goal line        
zero meters ahead with a velocity of zero, and FMS(accelerating) +           
env_struct(open_road) would produce a goal line at points of the          
env struct with maximum velocity.  

Costmap Generation 
The next step in the Path Planning task is to plan a trajectory             
through the augmented environment structure to the goal line. In          
order to use graph search algorithms, which is explained in detail in            
trajectory planning section, the environment has to be converted         
into something that can be reasoned about computationally: in other          
words, a costmap. The high-level idea of a costmap is that things            
that the vehicle should not move over (e.g. road borders and           
obstacles) are assigned a high cost. Therefore, the area of the           
costmap where a road border lies is assigned a higher cost than the             
area where a lane line is. Obstacles are assigned the highest           

possible cost, and open road is assigned a minimal cost. Similarly           
to Year 1, the Path Planning team chose to use a costmap            
representation of the vehicle’s environment because it works well         
with the trajectory rollout algorithm [10]. 
 
To understand the complex environment, we need a way to convert           
the environment into a data structure which the computer can          
understand. A Costmap is a 2D matrix which encodes the semantic           
“cost” value of features into the environment as numbers or “cost           
values”.  
 
Everything that affects the costmap is referred to as an “object”           
(roadlines, pedestrians, traffic signs, etc.). WATonomous has       
decided to draw a distinction between two classes of objects: Static           
objects and Occupiable objects.  
 
Static objects do not have state, and only influence the region of the             
costmap that they physically occupy. An example of a Static object           
is a parked vehicle, or a Road Line.  
 
Occupiable objects on the other hand, do have state, and their           
region of influence depends on that state and is not restricted to the             
space they occupy. An example of an Occupiable object is a Stop            
Sign. The state of a stop sign (blocking or passable) depends on            
how long the vehicle has been waiting at the stop sign. The region             
of influence of the Stop Sign is not only where it stands in the              
ground, but also in the road next to it. 
 
Static objects are represented by bounding boxes with a pose          
(position and rotation). There are multiple steps taken to draw a           
Static object onto the costmap. First, padding is applied to each           
object or line based on the car’s size and the importance of the             
obstacle. Objects that the car should not hit generally have higher           
cost. For example, parked cars may have a wide, high cost padding            
to avoid collisions. Crossable lane lines might have a thinner, low           
cost padding. After padding, the object is translated to the desired           
location and orientation and added to the costmap using matrix          
addition. To optimize the Year 2 costmap, Eigen was chosen for its            
efficient matrix manipulation tools. These tools allow the team to          
efficiently blur the obstacle, rotate the obstacle and add the obstacle           
to a specific area of the costmap without changing or affecting the            
other parts.  
 
Drawing an Occupiable object is more complex because it depends          
on the object's state. Each class of Occupiable object (Traffic Light,           
Pedestrian, Stop Sign, etc.) contains its own FSM which gets          
updated every time Path Planning receives a new Environment.         
(insert at least one FSM diagram example of an Occupiable Object           
FSM).  
 



 

The region of influence of an Occupiable object class can be           
queried at any time, returning a Costmap Layer (which is just a 2D             
matrix of cost values). The returned layer depends on the state of            
the object. For example, a Stop Sign in the “blocking” state returns            
a layer containing a maximum cost strip blocking the road next to            
the sign, while a Stop Sign in the “passable” state returns an empty             
layer. 
 

Figure 18: Costmap Example 

 
Trajectory Planning 
Another requirement of graph search algorithms is a discrete set of           
next vehicle states (a 2D position). Therefore, now that the current           
environment is shown in the costmap, a selection of optimal          
(minimum cost) next vehicle state can be computed given a current           
vehicle state. The discretization of possible next vehicle states is          
done by interpolating over the car’s possible turning angle, at some           
constant radius magnitude. 
 
The cost approximation of moving from the current vehicle state to           
the next state is done by interpolating over intermediate vehicle          
states of the twist the vehicle would follow to get to that next state,              
assuming a constant turning angle. In Year 2, we’ve further tuned           
the parameters relating the vehicle speed to its maximal twist angle           
by distance in order to ensure that the vehicle states generated are            
possible for the vehicle. The number of intermediate interpolated         
states is equal to the arclength of the twist, divided by the            
magnitude of the interpolation, thus a smaller magnitude means a          
more accurate discrete approximation of the vehicle’s path along         
the twist. The cost at each intermediate vehicle state is summed,           
and that sum is used to approximate the cost of the twist necessary             
to get from the current state to a next state. The distance from the              
goal line of each next state is also factored into the state’s estimated             
cost, since Path Planning wants to choose states that move the           
vehicle close to the goal line. Pseudocode for this state generation           
is available in Appendix B. 
 
The A* search implementation that actually generates the optimal,         
minimum-cost path (i.e. a vector of vehicle states) is given the           
costmap, an initial vehicle state, and a goal line [11]. From there the             

algorithm generates the possible next vehicle states and puts those          
states into a priority queue ordered by minimum cost. The          
algorithm then pops the minimum cost state off the queue and           
recursively calls itself, finding the optimal next state from the first           
optimal next state. The recursive A* search continues until the          
vehicle state popped off the queue is close enough (within 1 meter)            
to the goal line, and then the path of optimal vehicle states that             
were taken to reach that last vehicle state is returned. This           
algorithm is shown visually in Figure 19 below. 
 

Figure 19: Visual Representation of A* Trajectory Rollout 

 
 
The last step in the Path Planning task is to ensure that the physical              
vehicle follows the optimal path found as closely as possible. This           
is done using feedback controllers, one to control the car’s wheel           
angle, and one to control the car’s speed. The implementation of the            
controllers is described in the Motion Control section of this report. 

Local Planning Simulator 
WATonomous has developed a custom simulator implemented in        
C++ using GLUT. The simulator is used to test the local planning            
algorithms in real time using a manually drawn environment. The          
simulator provides a GUI on which the user can draw an           
environment using key presses and mouse clicks. For example, the          
user is able to add a lane line into the environment by clicking to              
add points to the polyline that represents the lane line.  
 
After the environment has been drawn, the costmap produced by          
the static and occupiable object generation algorithms is rendered         
on top of that environment. After the costmap is rendered, the           
trajectory planning module is called, and the resulting path is          



 

plotted on top of the environment and costmap. This allows          
developers of those local planning algorithms to iterate on their          
design, while quickly confirming that they have not regressed the          
output costmap in a simple and visual way. 
 
 
 

Figure 20: Local Planning Simulator 

 

Motion Control Algorithm 

Feedback Control 

Similar to Year 1, two Feedback Controllers are invoked to          
maintain the speed and heading of the vehicle by correcting          
tracking errors. Both Controllers take the current Path and the          
Current State of the vehicle as input. The Current State is a reading             
of the vehicle’s current location and velocity from the GPS and the            
IMU, whereas the Path is passed down from the Trajectory Planner           
module.  
 
A PID Controller is used to correct tracking error for the speed. To             
compensate for the actuation latency (the delay between the time of           
command sent and the time of physical activation), the torque          
output is calculated as a combination of three error terms:          
Proportional, Derivative, and Integral. The Proportional term aims        
to correct the error between the current and target speeds, the           

Derivative the rate of change in the current speed, while the           
Integral the accumulation of these errors over time (regardless of          
how small each error is at its point in time). 
 
A Pure Pursuit Controller is used to correct tracking error for the            
steering angle [12]. Similar to the logic used in Year 1, the Next             
State is chosen based on the Current State’s speed. The higher the            
speed at which the vehicle is driving, the farther away the Next            
State can afford to be. There is, however, one significant change           
introduced into this year’s implementation. After the tentative Next         
State is selected in the previous step, the steering angle required to            
arrive at this tentative State given the Current State is calculated.           
The difference between this steering angle and the Current State’s          
angle acts a scaling factor to reselect the Next State closer to the             
Current State to avoid cutting the corner on sharp turns. The output            
of this Controller is thus the steering angle in degrees that would            
take the vehicle on an arc to hit the carefully chosen Next State.  
 
Further post-mortem analysis and reflection upon the results of year          
1 brought out multiple critical failures that were later improved          
upon thoroughly and systematically in year 2. The wheel angle and           
speed controllers were originally implemented from scratch in C++,         
which necessitated custom error-prone implementations such as       
finding the Next State along the Path polyline. This led to an            
increase in the time needed to fully test the controllers’          
functionality, and to tune their integration with Trajectory Planning.         
In addition, the lookahead value used to find the Next State only            
took into account the speed of the vehicle, and not how it was             
turning. This resulted in erroneous edge cases, for example some          
maneuvers, (e.g. taking a sharp turn), require a much smaller          
lookahead than others, (e.g. driving straight), in order to not cut the            
corner of the turn. Furthermore, there was no replicable and reliable           
way to test the controllers in simulation. To gauge the performance           
of the controllers under certain parameter values, the vehicle had to           
be physically towed to the test track and repeatedly run in the same             
turn manually with different parameter values. This led to a huge           
time loss spent on the test track in order to tune the parameter             
values that were proven to be suboptimal during the competition. 
 
For this year, to circumvent the aforementioned issues, the design          
and implementation process of the two Controllers is strategically         
migrated to MATLAB/Simulink [13]. The program provides ease        
of use in modifying the gains in real time and allows incorporation            
of Vehicle Dynamics blocks for further tuning that takes into          
account the physical limitations of the vehicle. The Ziegler-Nichols         
method is employed to select the initial values for the tuning           
parameters. More specifically, Kd and Ki are initially set to 0 while            
Kp is increased gradually from 1 till the vehicle’s speed oscillates           
consistently around a certain speed. The oscillation range and Kp          
are used to derive the starting values for Ki and Kd by following the              



 

mathematical formulas shown in [14]. These parameters are        
subsequently fine-tuned through a manual trial and error process.         
The same process is repeated for 5 different speeds ranging from 5            
mph to the maximum speed limit of 25 mph to obtain a set of PID               
parameters. The set is then linearized to account for all speeds           
within said range. The block diagram of the Feedback Control          
module is available in Appendix C. 

CAN Interfacing 

In order to properly execute the calculated trajectories and receive          
feedback control signals, a robust communication interface is        
required to structure and encode controls commands to the vehicle,          
as well as receive, decode, and relay feedback information from the           
vehicle’s internal controllers. This interface was created using the         
well-known CAN communication protocol. The robust      
communication is achieved through concurrency and parallelism in        
decoding and encoding messages. Each state of the vehicle is          
maintained through its own thread or process, to mitigate data loss           
and corruption, as well as greatly decrease latency between the          
vehicle and the computing system. Information is channeled        
through the vehicle’s three CAN buses: High Speed (HS), Chassis          
Expansion (CE), and Low Speed (LS). For receiving feedback         
information from the vehicle’s internal sensors, corresponding       
addresses are queried and queued to gather the desired message bit           
packets. These message packets are filtered and manipulated to         
extract the physical signals from the vehicle (e.g. acceleration,         
steering angle, brake pressure, etc.). This data is then provided to           
the feedback controllers for real-time use, as well as to sub-teams           
such as local mapping, planning, and sensor fusion. 
 
In addition to effectively receiving information from the vehicle,         
safety-critical control commands need to be sent to and understood          
by the vehicle for real-time control. To achieve this on a low-level,            
commands for steering, braking, and torque must be periodically         
transmitted to keep the vehicle in a controllable state. Once the           
vehicle is in the correct state, physical signals (e.g. torque requests)           
are translated into a valid message byte packet (which includes          
protection signals and active rolling counts) and sent to the          
receiving control unit on the CAN bus. There are separate feedback           
signals specific to the communication interface to ensure messages         
have been sent and received correctly at the desired timestamp.  
 
In tandem with the safety-critical control, important indication        
signals are controllable with the CAN interfaces. Indications        
including left/right blinker lights, hazard lights, and high beam         
lights are controllable with requests from the path planning module.          
These indicators will be triggered during lane changes, intersection         
turnings, parking, and under tunnel navigation. 

Safety Concept Review 

Building on top of the testing safety protocol of Year 1, each clause             
was revised and deemed to be relevant for Year 2 as well. 
 
One of the additions of Year 2 is the front bumper rack. The main              
structure of the front bumper mount was designed to carry 122 kg            
of weight in static loading conditions and 5G forces in dynamic           
loading conditions. Using a factor of safety of 1.2, shocks and           
vibrations from bumps in the road are mitigated.  
 
 
 
 
 
 
 

Figure 21: Front Bumper Mount Bolts 

 
 
While designing the front bumper mount, it was made sure that           
aluminum bolts will be the failure point in case of any accident, and             
a metal cable was used, as shown in Figure 21 above to hold the              
mount from falling off the car, in case of impact. 
 
For electrical safety, thecompute and power systems have been         
equipped with fuses throughout to protect the vehicles against the          
risk of excess current draw or faulty equipment. For compute          
safety, the motherboard holds three temperature sensors and        
cooling units to protect the vehicles compute unit against the risk of            
extreme internal temperatures. Proper wires with sufficient gauge        
and insulation were selected to protect the vehicle against risk of           
cable splicing and power surges, preventing the event of an          
electrical fire. 
 
For CAN communication with the vehicle, many safety layers are          
implemented on both a software and hardware level.  Error states          
and diagnostic codes are tracked by the computing platform at a           



 

high frequency to detect any faults in the internal control units. If            
the error state is non-critical to the controls of the car, or            
non-indicative of corrupt data, the error is simply logged for later           
analysis. In any other case, the vehicle will alert the central state            
machine to safely shut down the process and return control to the            
safety driver. All states for the central state machine are displayed           
on the user interface for driver information. In the event where           
communication is cut off from one of the three CAN bus lines, the             
vehicle will return control to the safety driver and the entire           
software pipeline is temporarily terminated. The safety driver also         
has full manual override capabilities while in an autonomous state,          
and all actuation commands are blocked when a manual override is           
triggered. 
 
In addition, an autonomous control box allows for a physical          
electrical disconnection between the vehicle’s ECUs and the        
computing platform, while ensuring power to each CAN bus line is 
adequate. When in the vehicle is in an autonomous state, meaning           
the connection is established to the vehicle’s ECUs, the blue safety           
light will be turned on to warn bystanders of the vehicle’s state. In             
addition, high insulation and twisted pair DB9 cables are used to           
prevent any data corruption caused by electromagnetic interference        
between the computing system and the control MCUs. 

Aesthetic Design and Usability 

Figure 22: WATonomous Decal Coating 

 
 
The above image demonstrates the approach WATonomous has        
taken to the exterior design. The silver vehicle in the top left of the              
above image is the original Chevrolet Bolt. The team colour, blue,           
was chosen as the main base for it represents reliability, integrity           
and unity. It also brings out a sense of safety which has always             
been WATonomous’s priorities and ensures the consumers feel        
secure and protected in the presence of the vehicle. The team name            
is placed stylishly in white on the left side of the vehicle along with              
multiple decals from various sponsors, which further emphasizes        
stability thus building rapport and instilling trust with the         
consumers in WATonomous.  

 
When integrating additional parts to the vehicle, the mechanical         
team was mindful of symmetry. The room rack does take away           
from the symmetry of the car because it was designed in way that is              
aesthetically pleasing to the eye by not drawing much attention.          
The wing shape lidar design has two cameras facing outward on           
each side as to not break the established pattern of symmetry. The            
outward direction of the wing shape lidar design adds a rotational           
effect around the focal point. The front bumper was architected in a            
way that keeps the idea of balance in the mind’s eye as the             
symmetrical design is easier for the mind to process. It provides a            
focal point that draws the eye’s attention immediately and balances          
out the visual weight of the car. 
 
On November 22nd, 2018, WATonomous and St. Paul’s        
Greenhouse came together and hosted a Greenhouse event        
discussing social responsibility with a focus on autonomous        
vehicles. Social responsibility events help to educate the local         
community and possible consumers on the benefits of autonomous         
vehicles. At the Greenhouse event, the WATonomous team was         
able to answer questions regarding potential dangers of autonomous         
vehicles by providing research proven solutions. Public       
engagement at events such as the Greenhouse event helps to          
eliminate possible mental barriers that may stop potential        
consumers from purchasing autonomous vehicles.  
 
Equally important, WATonomous recognizes the importance of       
government support in commercializing autonomous vehicles.      
Earlier this year on January 22nd, 2019, the Minister of          
Transportation Ontario, Hon. Jeff Yurek, visited the University of         
Waterloo, where he formally announced that the province is easing          
restrictions on its autonomous vehicle pilot program.       
WATonomous was able to present its technology before the         
Minister to further demonstrate the capabilities of autonomous        
vehicles to the government. The team was then featured in an           
article on The Record along with Hon. Jeff Yurek with the title            
“Ontario driving ahead with expanded autonomous vehicle       
program” [15]. 
 
Additionally, WATonomous engages with potential consumers on       
social media through weekly postings and updates. Customers are         
more likely to trust our autonomous vehicle because WATonomous         
provides transparency to the general public. The WATonomous        
Facebook page has a five-star rating and grew more than 54% since            
the Year 1 challenge. The Facebook page now broke the 1,000           
follower milestone in the Year 2 phase and totals 1,485 posts as of             
March 24th, 2019. WATonomous’ active marketing strategy acts as         
the bridge between consumers and autonomous vehicles. 



 

Conclusion 
This report presents a detailed description of the technologies used          
by the WATonomous team in preparation for Year 2 of the SAE            
AutoDrive Challenge. The hardware was chosen to be        
performance-effective and cost-effective. Redundancy in selected      
sensors provided the element of safety. Electrical and thermal         
analyses were conducted to determine power draw and concluded         
that our previous cooling system was still appropriate. Building         
upon the design philosophy of Year 1, design considerations were          
made in anticipation of future challenges as the competition         
progresses, such as the adjustable sensor mounts. 
 

The Software design was architected in a modular way to allow           
multiple teams to tackle the problems in isolation and to easily           
integrate the components once they were completed. Implementing        
the software stack as a set of ROS nodes improved runtime           
performance by leveraging their built-in concurrent nature and had         
managerial benefits by mapping directly to the team structure. 
 
This year, a safety-first, robust and high-performance approach to         
the Year 2 challenges was accomplished. The WATonomous team         
is proud of their work and looks forward to the competition and            
making the world a safer place. 
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Appendix 

Appendix A: Bill of Materials (BOM) 

 



 

Appendix B: Trajectory Planning Pseudocode 

 

Appendix C: Feedback Controller Algorithm 

 

  



 

  



 

 


