

WATonomous Autonomous Vehicle Design Concept for Year 2 of the SAE
AutoDrive Challenge

Abstract
This report is prepared by the University of Waterloo’s
WATonomous student design team for the second year of the SAE
AutoDrive challenge. This report showcases the progress made by
WATonomous over the last year in preparing an autonomous
vehicle (AV) for the second year of the competition. These
accomplishments are presented in terms of hardware and software
integration, as well as cost analysis.

The approach presented in this paper builds upon the Year 1 design
to accommodate for more complex autonomy challenges. A
relatively low-cost approach is introduced in this paper with a focus
on expandability to create a Level 4 self-driving vehicle, attempting
to minimize the amount of design changes in the future by
designing well for the early-mid levels of autonomy.

The related areas of architecture discussed include sensor suite,
sensor mounting and cooling, electrical, sensor fusion, perception,
processing and path planning, associated costs and why those
decisions were made.

In the previous report, it was found that the low-cost solution
without sacrificing performance is to extract information from a
16-channel resolution LiDAR and a 41 FPS camera and utilize
sensor fusion to obtain a spatial 3D, human eye representation of
the environment. For Year 2, we amend our previous claims by
including more sensors to further reduce the vehicle’s blind spots.
The perceived environment combined with odometry and
localization data provides the AV with all of the information
needed in the early and later stages of autonomy. Sensor placement
remains mostly on the roof of the vehicle to maximize the field of
view (FOV). In addition, we’ve included a front bumper mount to
ensure that the AV is able to see the entire surrounding
environment.

Introduction
The motivation behind this report is to fulfill the current need in
society for eliminating driving accidents, decreasing environmental
pollution, and increasing human efficiency. Self-driving vehicles
are one of the most sought-after engineering advancements in
today’s society. They are often regarded as one of the most difficult

engineering challenges due to the complexity involved in creating
one. Human lives are at stake when operating an autonomous
vehicle, and their multi-system sensor, electrical, and software
dependencies in addition to handling complex real-life scenarios
allow for many methods of failure. In cases of fault and failure,
redundancy must be in place to avoid unsafe and undesired vehicle
behaviour.

Autonomy is a heavily researched topic of which many different
approaches are available. However, finding the balance between
cost and safety is one of the most difficult components of the
design of an autonomous vehicle. The WATonomous AV system is
designed to extract the full benefits from each of the primary
sensors and fuse the data together to allow the AV to have a fully
perceived environment. This results in lower computational need,
lower resolution sensors, and as a result, a relatively inexpensive
approach to designing an AV.

The report goes in depth on the design of the middle stages of
creating an autonomous Chevrolet Bolt EV and lays out the
groundwork for bringing an autonomous car up to the SAE Level 4
Driving Automation standard. To do this, an in-depth analysis is
done on the AV’s mechanical, electrical, and software systems.

For the mechanical system, an analysis of optimal sensor placement
and protective techniques are laid out. A focus is made on FOV and
accommodation for additional sensors, as well as different
configurations. The electrical design is broken down, analyzing
power consumption, optimal power system components and
explaining robust electrical wiring measures that are important for
ensuring the reliability of the autonomous vehicle when in
operation. Additionally, the software architecture is detailed,
including an analysis of sensor fusion to leverage the key features
from all sensors. Methods that are robust for creating the AV’s
environment, such as computer vision and 3D point cloud
clustering, are analyzed and are used to perform mission planning.
Motion control algorithms are then analyzed to properly navigate
the AV from the environmental data.

Concept Selection Review

Hardware Design Selection

Sensor Suite Selection

The selected sensor suite was initially designed in Year 1 to be
highly modular to accommodate additional system development. In
year 2, the selection has vastly remained the same, although more
units of each sensor were considered in our design. Redundancy,
reliability and maximizing field of view were concerns in
maintaining the AV’s safety system requirements. To fulfill these,
the vehicle must use its sensors to determine the distance,
geometric boundaries, and identities of surrounding objects, while
also understanding the dynamics and relative position of these
objects.

Visual sensors considered include cameras, LiDAR and RADAR
sensors. LiDARs are beneficial for detecting objects in a 3D spatial
environment 360° around the vehicle. Cameras allow for feature
extraction and classification of objects, and RADARs can detect
velocity and displacements with high accuracy. Odometry and
localization sensors considered were an INS/GNSS device, useful
for obtaining accurate linear/angular acceleration and vehicle
localization, as well as wheel encoders, useful for obtaining vehicle
velocity.

Each of the sensors listed above have areas of strength and
weakness. A general comparison of each sensor type is shown in
Table 1 below from a scale of 1 (weak) to 5 (strong). All attributes
described in Table 1 were considered to select a suite that would
strongly cover all aspects when combined and fused together.

Table 1: General Comparison of AV Sensors on Performance

Feature Camera LiDAR RADAR GPS IMU

Range 2 3 4 N/A N/A

Resolution 5 3 2 3 3

SNR 5 3 3 5 2

All-Weather 2 3 5 5 5

Physical Size 5 2 4 3 3

Data Stream
(Resolution &
Freq)

4 5 2 3 3

Cost 4 2 4 1 1

LiDAR - Camera Combination Suite

The drawback of a single sensor type suite is the required
information processing to infer the full range of the spatial,
dynamic, and semantic characteristics surrounding the vehicle. A
way that allows for extracting the useful features of both types of
sensors is to use a moderately channeled LiDAR with cameras.
This way, the AV can extract the 3D object detection and distance
features from the LiDAR and the classification abilities from
cameras.

Odometry and Localization Suite

Having GPS and IMU sensors allows for fusion of multiple data
sources, such as odometers and encoders, to decrease the
uncertainty of the GPS location, acceleration and pose data. This
approach proved quite useful to the path planning group and did not
require much changing for Year 2. The primary changes in Year 2
involve expanding the use of the GPS system to roughly localize
the vehicle on the provided HD Map of the competition track.

Sensor Suite Decision

The final sensor suite selection in Year 1 consisted of 2 PointGrey
Blackfly 2.3MP vision cameras, a Velodyne VLP-16 LiDAR, and a
coupled Novatel PwrPak7-E1 GPS and IMU. For Year 2, the
overall sensor types are the same with new variants of each added.

Camera Suite Updates

For cameras, 1 more Blackfly 2.3MP and 3 new BlackflyS 3.2MP
cameras from FLIR will be added, for a total of 6 cameras. The new
BlackflyS was chosen for its improved image resolution, as well as
being a descendent of the original Blackfly 2.3MP, making driver
integration simpler.

PointGrey cameras were the type of cameras considered in Year 1,
in particular, models that leverage Sony's Pregius global shutter
CMOS technology which reduces motion blur at high speeds [1].
Another critical criterion that PointGrey cameras fulfill is
customizability. They provide full control over parameters such as
shutter, gain, and white balance, all of which help in the tuning and
performance of perception algorithms. Generally, this has proven to
be a good choice, and so upgraded PointGrey cameras were
acquired for Year 2 instead of another model.

The decision to continue using the Blackfly line cameras instead of
other PointGrey cameras came down to the frame rate. A higher
frame rate is beneficial for reducing latency and increasing the
responsiveness of object-tracking algorithms. For Year 2, the
dynamic challenges require tracking both static and dynamic

objects at relatively slow speeds, therefore the BlackflyS with 41
FPS is more than suitable.

LiDAR Suite Updates

On top of the original VLP-16 LiDAR, 2 new VLP-16s and 1 new
VLP-32C will be added. This is primarily to achieve a far higher
fidelity 3D spatial representation and to cover major blind spots.
The VLP-32C will replace the existing VLP-16 as the center
LiDAR, while the 2 VLP-16s will be placed on the sides of the roof
rack at a 45° angle to give a better view of the sides of the car. The
last VLP-16 will be mounted on the front bumper and serve to give
a better view of the lower elevation in front of the vehicle.

For Year 2 challenges, the LiDARs will be used to detect and
obtain distances to 3D objects in the object avoidance and
navigation challenges. The cameras will be used to detect, classify,
and understand the many traffic signs and symbols, as well as
parking spaces and lane lines to complete all three of the dynamic
challenges. The 6 cameras will be used to maximize the field of
view in the environment, as well as cover blind spots. The LiDAR’s
superior range and point cloud clustering will allow the vehicle to
see three dimensional objects further ahead.

INS Suite Updates

Finally, the Novatel GPS and IMU provide accurate location,
velocity, and acceleration information, which is necessary for path
planning and decision making, specifically to estimate the vehicle’s
position and dynamic states at all times without compromising on
low speed accuracy. A new key use of the INS in Year 2 is to assist
in hardware time synchronization between sensors. This was
achieved through the use of a high-accuracy reference clock signal
provided by the GPS. Specialized software executes a best master
clock algorithm to detect the reference signal based on the
hardware identifier, clock quality, and variance. Routing this signal
to the designated GPIO inputs on the cameras and LiDARs will
provide the required time-stamping between the GPS clock signal
and the slave sensors.

Sensor Suite: Considerations for Future Expansion

The current sensor suite provides the vehicle with significant
sensing capabilities which are more than enough for Year 2. Since
the sensor placement on the roof of the vehicle is customizable, the
sensing configuration can be optimized for greater sensing
capabilities. Expansion for future years will mainly focus on
improving the Time Synchronization PTP network as well as
including Continental RADARs for a greater FOV coverage. The
addition of Continental RADARs will allow for object detection in
varying weather environments, greater accuracy nearby detections,
as well as high fidelity object tracking that is superior to LiDAR.

Computing Platform

Careful consideration was taken during the design of the electrical
power architecture to make it expandable and adaptable. This was
achieved, in part, by using specialized power components to
provide centralized junctions that allowed for the connection of
multiple components. Figure 1 shows a diagram of the structure of
the computing platform.

Figure 1: Sensor and Computing Signal Architecture

Specifically, a 12 position circuit breaker block from Blue Sea
Systems was used to distribute 12V DC to the various sensors and
hardware elements that require it. This block can safely and easily
allow for new components to be integrated into the current power
architecture, including the competition scoring equipment. In Year
1, the choice of a 16 port ethernet switch was motivated through a
worst-case port usage estimation with 6 RADARs, 4 LiDARs, 1
compute server connection, 1 INS, and 4 cameras, totalling to 16
used ethernet ports in future years. For Year 2 the connections
would be: 1 INS, 1 Computer, 5 LiDAR and 6 cameras, totalling
13, which is sufficient. Extra hardware will be required for adding 6
RADARS in Year 3. A 4 port PoE injector switch was acquired for
the cameras in Year 1. Since 6 cameras will be used, 2 more single
PoE injectors were acquired.

Other considerations include a 1000W inverter with two 6-port
power bars (resulting in a total of 12 AC ports to accommodate
hardware that needs a 120V AC input) and a powered USB 3.0 hub
to expand the USB capacity and range of the compute server.
Custom hardware for the power distribution for the RADARs is
being developed but will not be used in Year 2. While these choices
vastly exceeded Year 1 requirements, they were chosen with future
expansion and integration in mind.

The Intel Compute Platform was integrated into this power
architecture through a 12V to 24V DC-DC Converter. A liquid
cooling unit was acquired to help with temperature management of
the Compute Platform. This was necessary as the computational

requirements of the autonomy software stack can easily cause
temperature failures of the system if not properly regulated. The
cooling unit communicates with temperature sensors installed
inside the Compute Platform and manages the flow of coolant
liquid into the system. The Compute Platform is connected to an
ethernet switch for data communication between all of the sensors
on the car. Three DB9 cables are routed inside the vehicle to the
Compute Platform’s CAN-PCIe card, enabling the ability to send
and receive CAN bus communication from the vehicle on the Low
Speed, Chassis Expansion, and High Speed buses. This is the
interface that allows controls to be sent to autonomously drive the
vehicle. A PTP-PCIe card was acquired and integrated into the
Compute Platform to assist in performing hardware time
synchronization between the sensors. This will help significantly in
developing an expandable and modular time synchronization PTP
network to improve the quality, latency, and bandwidth of the
sensor data pipeline.

Sensor Capability Analysis

Year 2 poses many newer, complex challenges that were not
presented in Year 1, including dynamic obstacles and traffic flow
control signals. Due to these new changes, a list of criteria was
established to select appropriate models and number of sensors to
use for the Year 2 dynamic challenges, including range, accuracy,
sample rate, resolution, and cost.

The maximum range of the sensors was an important factor to
consider when selecting an appropriate sensor, as it dictated hard
limitations in the vehicle’s coverage to sensing the environment.
The accuracy of the sensor was also included as a critical criterion,
as it directly determines the quality of measurements taken by the
vehicle and thus affects the output of the quality of real-time
vehicle software detection algorithms. The sample rate of the
sensor describes how frequently a sensor’s data is able to submit
new information to be used by software modules on the vehicle.
This is especially important for the vehicle to detect such a dynamic
and fast-changing environment, with the ability to detect sudden
and possibly erratic changes in obstacles around the vehicle.
Another important criterion chosen was sensor resolution, which
determines precision of measurements and how much detail is
present in the sensor output. Lastly, cost is an important factor in
sensor selection, as it is ideal to have an affordable solution for
autonomous driving and in the case if the system would become
commercially available.

Sensor Verification and Effectiveness

All sensor testing and verification measures were performed at the
vehicle level with the sensors mounted directly on the vehicle. This

provided the means of verifying sensor capability that is
constrained to the environment in which it will operate in.

The first test involved a range test for the LiDAR, where a
reflective board was held starting 100 m from the LiDAR. The
vehicle slowly moved toward the board until about 2 m away.
When replaying the data gathered during this test, no points were
shown to have reflected off of the board until approximately 96 m
away. Although this is slightly less than the VLP-16 specifications,
it exceeds the minimum detection distance outlined in the sensor
capability analysis by around three times the stopping distance.
During this range test, an accuracy test was also performed. At four
separate checkpoints, 100 m, 75 m, 50 m, and 25 m away from the
reflective board, the distance from the board to the LiDAR was
measured with a measuring tape. The accuracies at each distance
are shown in Figure 2. Unfortunately, the accuracy level at 50 m is
above the ideal value and hence this error factor must be taken into
account within the software at longer distances.

Figure 2: Horizontal FOV with uncertainties for LiDAR

Similar LiDAR range tests were completed with the reflective
board in the vertical direction to determine the vertical field of view
of the LiDAR. The reflective board was in view until it exceeded
about ±15° from the horizontal plane, which matches the
specifications. Refer to Figure 3 for a visual representation of the
vertical FOV.

Figure 3: Vertical FOV for Camera and LiDAR

The next test a small traffic cone object was held at a close distance
to the camera, and gradually pulled further away. At the point
where the object was viewed as less than 10 by 10 pixels in the
image frame, the distance from the object to the camera was
measured with a measuring tape. The resulting range of the camera
is about 46 m, which exceeds the minimum stopping distance by
more than 17 m. Next, the horizontal FOV was determined by
measuring the angle at which an object just disappeared from view
in the image frame. The resulting horizontal field of view is ±44°
from the center axis. The measured range and horizontal FOV is
shown in Figure 2. The same method was applied to measure the
vertical FOV, resulting in a value of about ±32° from the center
axis. The vertical FOV of the camera is pictured in Figure 3 above.

The last sensor verification test involved the Novatel INS system.
First, the time to first fix for a hot start of the GPS was tested,
which took 4 seconds on average with low variance. Next, the
susceptibility of the INS system to experience drift was tested.
Starting and ending in the same location after a 5 minute drive in
the route shown in Figure 4, the drift in the X and Y coordinates
returned by the Novatel system was measured. In the x-axis, the
drift was approximately 0.1598 m, and in the y-axis the drift was
approximately 0.01348 m from the starting position. Both of these
values are small enough such that they can be mostly attributed to
inaccuracies of driving the vehicle to its exact starting position at
the end of the route.

Figure 4: Novatel INS Drift Test Route Map

Hardware Integration Design Review

Robust Hardware Integration

Front Bumper Sensor Mount

During the Year 1 competition, the team did not have any sensors at
the front of the car. But to minimize blind spots and to improve
lane detection, it was decided to have a fisheye camera and a
LiDAR at the front of the car. To accommodate these sensors in the

front of the car, a robust mechanical structure was designed and to
ensure its safety and robustness, FEA analysis was carried out.

Figure 5: Front Bumper Sensor Mount

An 80/20 3*3 inch aluminium extrusion was used as the main
mechanical platform for the different sensors. This extrusion was
attached with the bash bar of the car using custom designed
connectors.

A camera mount with three degrees of freedom was designed for
the fisheye camera. This mount was assembled onto the main
mount structure. A custom designed camera shell was used to
enclose the camera. An acrylic clear dome was used with the shell
to ensure the view angle of the fisheye lens is not obstructed.

The LiDAR mount consists of four distinct parts in its assembly
(Pivoting bracket, Rotating Arm, Binding Barrel). However, an
additional secondary part can be associated to this assembly (i.e.
the horizontal 80/20 quad. extrusion attached to bumper).

Two Pivoting brackets attach directly to the bumper extrusion via
two screw hardware. These are speciality hardware consisting of a
hex screw and sliding plate which allows for horizontal movement
within the extrusion. However, the other side has holes in a circular
pattern with each at a 200 difference. Furthermore, to achieve a tilt
in between these degrees, another set of holes are drilled to achieve
100 difference with respect to the outer holes.

The rotating arm serves the purpose of holding the LiDAR and
providing an extension from the body to allow clearance and avoid
signal and mounting interference during the LiDAR’s data sweep.
The arm is pivoted at one end of bracket using a binding barrel to
fix it while it is set to a desired angle using a second barrel.

Roof Sensor Mount

In Year 1 competition, the roof rack was the only location where
external sensors were mounted. A limited number of sensors could
be mounted as only a small plate was attached to the top of the
vehicle roof rails. The sensors were also fixed in place and could
not be adjusted to satisfy the software team’s needs. In Year 2,

many more LiDARs and cameras were added, and each sensor was
placed on an adjustable mount.

The sensors used for Year 2 include three cameras (two of which
are normal angle FOV and one with a narrow FOV), three LiDAR
sensors, and an INS system. All sensors have been mounted to the
exterior of the vehicle, except the IMU component of the Novatel
INS system. The IMU serves best when placed in the centre of the
vehicle, it has thus been mounted inside the vehicle, near the
vehicle’s centre of the mass.

Figure 6: Roof Sensor Mount Top-level View

NVH Robustness

To make sure that front bumper mount is robust enough, FEA
analysis was carried out. it was designed such that, it can carry the
weight of an adult in static loading condition and 5G forces in
dynamic loading condition to survive any shocks from potholes and
bumps. Moreover, natural frequencies of the mount were identified,
and it was made sure they do not coincide with natural frequencies
of the car, which are 45 Hz and 124 Hz.

The biggest challenge in mounting sensors on the roof rack was
mitigating vibration. This is needed so the effects of bumps and
other irregularities in the road are not transmitted into the sensor
readings. For the first prototype mount design, the main plate was
fastened directly to its mounting brackets (metal on metal contact)
to get an initial understanding of the required damping for the
sensors. In this configuration, camera and LiDAR images were
stable.

Although the original design was stable enough for its use case,
rubber spacers were still added between the mounting brackets and
main plate in the final sensor mount to reduce vibration that could
otherwise damage sensors over long periods of operation.
Stiffening members have also been added to the main plate such
that road forces do not excite it at its natural frequency of 45 Hz

and 124 Hz for the first and second natural frequencies
respectively.

FEA and vibrational analysis were performed to verify the
structural integrity of the centre and side mounted LiDAR
components when subject to vibrations that the average car may
experience on a daily basis.

Sensor Placement

Figure 7: Sensor Placement Diagram

Many changes were made with respect to difficulties completing
some of the Year 1 challenges. The Year 2 design incorporates 3
additional LiDARs and 4 additional cameras in order to reduce the
sensor suite’s blind spots and for redundancy purposes. Similarly to
the previous design, the IMU is placed near the center of mass of
the vehicle, the GPS is mounted without any ceiling obstruction on
the roof, and the front left (RFL in Figure 7) and front right (RFR)
cameras remain for the use of stereo vision for depth perception.

In order to address the previous blind spot extending up to 3m in
front of the vehicle, the cameras were raised and angled down. This
effectively reduced the blind spot to be within 1m of the vehicle,
with the last meter to be addressed by the front bumper camera
(BC). To compensate for the loss in long range vision, the new roof
sensor suite includes a centre camera (RFC) equipped with a
12.5mm focal length lens for long range object classification.

As a result of raising the cameras, the centre VLP-32C LiDAR
(RC), placed as such to make the most out of its FOV, had to be
raised as well. Two additional VLP-16 LiDARs were mounted on
the side of the vehicle tilted down (RL, RR), as well as one VLP-16
on the front bumper (BC) to further increase redundancy and avoid
collisions.

Sensor Mounting

80/20 Extrusions were attached to the roof rails of the vehicle to
create a roof rack. This allowed for the ability to mount many more
sensors compared to year 1.

Figure 8: Roof Sensor Mount Front View

The centre LiDAR was centered along the width of the vehicle and
mounted in the front half of the vehicle length wise. To mount the
four pillars of the stand to the roof mount frame, four gusset
brackets were used. This allowed for adjustability in terms of the
position of each pillar, which is a recognized benefit to using
T-slotted framing components. Additionally, four more gusset
brackets were attached to each column, and two 6-inch aluminum
extrusion cut outs were mounted on each side, acting as the base for
the tilting mechanism. A pair of 90-degrees pivot brackets were
utilized to create adjustability in the preferred field of view for the
centre LiDAR, which allows the software teams to adjust the tilt
angle based on specific future needs. Lastly, a customized LiDAR
plate was designed in order to attach the LiDAR to the tilting
mechanism. The overall height of the centre LiDAR plate was
increased from the year one competition, allowing the LiDAR to
generate mapping views without obstruction of the pillars which
support it.

Two VLP-16 LiDARs were chosen to be mounted on the side of
the vehicle. The sensors are placed in the middle of the vehicle
lengthwise and suspended on an angle over the vehicle's B-pillar.
Their placement enables a larger range of detection from the year 1
vehicle, which incorporated a single center mounted lidar. These
additional side mounted sensors allow for the detection of objects
on the side of the vehicle, effectively reducing the size of the side
view blind zones.

The side lidars are also mounted using T-slotted extrusions and
framing components. The primary extrusions are suspended off the

top surface of the roof rack at a 45-degree angle upwards. They are
supported by shorter upright extrusions, which are fastened to the
primary extrusions using surface brackets. Surface brackets were
also used to fasten the primary extrusions to the existing frame. A
secondary extrusion is fastened perpendicular to the primary and
allows for the mounting of the same lidar tilting mechanism, as
previously discussed. The three LiDARs do not require any
modifications or external housing to be temperature and weather
resistant.

Three cameras are mounted on to the front of the roof rack equally
spaced across its width. The left and right cameras use a normal
FOV angle lens. The four aluminum extrusions oriented vertically
act as pillars of the mounting structure and are directly bolted onto
the base which is fastened to the roof rack. Gusset brackets are
attached to each extrusion which act as a support for the two
aluminum extrusions that lay horizontally. These two extrusions act
as a support structure for the camera plate which is fastened onto
them. The plate has slots on the both side through which it is
attached to the pair of aluminum extrusions which allows for
adjustability in the forward and backward direction. Although this
adjustability can currently only be executed manually, in the future
this adjustability is meant to be motorized. Finally, the camera and
lens are mounted on to a copper block heat sink and a 3D printed
stand respectively. Both of which are directed bolted onto the
camera plate.

As shown above, the mounting design for side cameras is very
similar to the front camera design. However, unlike the mounting
of the front camera, the side camera mounting includes a pair of
90-degrees pivot brackets which allows the cameras to be tilted and
fixed at varying angles as required by the software team.
Furthermore, the 3D printed stand for the lenses differs
geometrically from the one for the center camera mounting as the
dimensions of the lenses and side cameras is different than that of
the center camera.

The two cameras are enclosed in custom 3D printed housing with
an opening in front for a polycarbonate sight window. Both the
sight window and the bottom of the housing are gasket-sealed to
provide waterproofing. Since the LiDAR is intended for automotive
use with an IP67 rating, this level must also be sufficient for
protecting the cameras, inspiring the decision to create a camera
housing design that achieves IP67. This means that the camera
housing must be dust tight and watertight down to a 1000 mm
depth for 30 minutes. Gasket material is selected with temperature
in mind, and fastener spacing, and torque specs are calculated to
compress the gasket by the vendor’s recommended amount of 25%.
Additionally, the cameras are sensitive to heat with a maximum
operating temperature of 45°C. To assist in cooling the cameras,

they are each mounted on top of a copper plate that will act as a
heat sink. The camera covers are also covered in material that
reflects light such that the plastic casing does not absorb heat from
the sun, keeping the cameras cooler.

Figure 9: Exploded View of Camera Housing

A metal plate is along the rear of the vehicle. This metal plate
allows for the mounting of various antennas such as the scoring
antenna, and the GPS unit that is used. Standard fasteners are used
as these units are not susceptible to vibration. A blue autonomous
light is also mounted using standard fasteners. This light was
necessary for the competition.

Electrical Integration

A robust electrical integration of the sensors was ensured in a
variety of different ways. First, the wiring of the entire electrical
sensing subsystem was methodically planned out and executed.
Great care was taken to source ethernet cables (RJ45 CAT6) with a
high-quality mechanical clip mechanism to ensure ethernet
connections cannot become dislodged or disconnected during
vehicle operation. Additionally, the slack and specific path
throughout the car of the various cabling was managed carefully to
ensure any shifting during operation would not result in any
tension, compression, or stress of any kind on the cables. This was
achieved through carefully routing cables according to a routing
plan the electrical team created, using a combination of zip ties,
cable clips, cable glands and zip tie mounts to secure the cables
running through the car and around the server rack. Any custom
sensor power and data wiring was concealed with coaxial cables
and rigid wiring enclosures to ensure secure and sheltered

connections. For our LiDAR cabling, we ensured strong
connections between the LiDAR sensors and interface box and
added secure casing that allows us to debug connection problems
and measure power consumption whilst guaranteeing flexibility to
the system’s cabling. To secure cables that cross the interior and
exterior of the vehicle through the roof, watertight cable glands
were used to eliminate water leakage.

The power system was also designed in such a way as to ensure
connections are safe and secure, and important components are
protected through the use of circuit breakers. A breakdown of the
power system architecture can be seen in Figure 10. Initially, the
12V DC input from the vehicle is protected by a marine battery
switch, ensuring there are no live wires or buses anywhere within
the power architecture except at that single point of contact. From
there, the power is distributed to a 12V DC, 150A busbar (with a
parallel ground bus bar), that connects to the three main power
subsystems: the DC-DC converter for the compute system, the 12V
DC circuit breaker block for sensor components, and the pure sine
wave inverter to generate 120 VAC. The sine wave inverter and
DC-DC converter are both protected by separate, properly-sized
circuit breakers, while the 12V circuit breaker block allows for each
outgoing channel to be protected using small, modular circuit
breakers. Most devices connected to the 120VAC bar will have
integrated certified DC rectifiers to ensure a reliable and safe DC
input. This is all done to ensure that in the event of an electrical
failure or short circuit condition, the circuit breaker for that
individual component will disconnect it from the overall system,
and the rest of the power system and the vehicle’s battery system
will remain isolated, and thus unaffected.

Figure 10: Power System Architecture

Finally, the electrical platform also ensures robustness through the
sizing of the power wires that connect the various components
together. Worst case current and power calculations have been done
on all stages of the power architecture, and appropriate gauges and

lengths of wire have been selected and implemented to ensure that
they are rated for greater than the worst-case current draw. This
ensures that there is minimized voltage drop in the power wiring, as
well as reducing the risk of any catastrophic failures that might
occur during a short circuit condition, such as an electrical fire.

Compute Platform Integration

Serial Data Vehicle Integration

Equivalent to Year 1, a PEAK PCAN PCI Express FD card is used
to create a fast and robust serial connection from the Intel Crystal
Rugged to the vehicle via the CAN communication protocol. A
baud rate of 500,000 bits per second is used on the High Speed and
Chassis Expansion buses to achieve fault tolerance. The Low Speed
bus uses a baud rate of 33,000 bits per second due to the lower
priority of the traffic on this bus.

An ethernet expansion card allows higher ethernet bandwidth
through the 8.0 GHz PCIe 3.0 bus lanes and enables external
hardware and software time synchronization. Figure 11 shows a
general layout of the signal architecture inside the Crystal Rugged.

Figure 11: Crystal Rugged Signal Architecture

In addition, the Vector VN1640A bus interface hardware tool is
also connected to the CAN buses to act as a secondary method to
communicate with the vehicle for prototyping purposes.

Computing Platform Cooling Strategy

To source the liquid cooling loop for by the Crystal Rugged, the
thermal output of the various components requiring cooling in the
Crystal Rugged has been considered, as shown in Table 2. The total
thermal output of the computing platform in the current state was
found to be 390 W. Accounting for the fact that another FPGA will
be added in the future as well as other high heat output electrical
devices, including power converters, the Koolance EX2-1055
Computer Liquid Cooling System was chosen as the liquid cooling
solution. It should be noted that this is an all-in-one unit and

provides up to 900 W of heat dissipation. Additionally, this is
different from the 1450 W ALX-1450-P400 Modular Liquid
Cooling System recommended by Intel. This decision was made as
the former is half the cost of the latter, meets the design
specifications, and consumes less power. Additionally, the liquid
cooling unit is equipped with three temperature sensors at the Intel
Xeon processors and Arria 10 FPGA Development Kit to monitor
the compute systems temperature at critical regions. If any of these
sensors exceed 55 °C, an interrupt signal is sent to the CPU to
safely shutdown the system and avoid damaging components.

Table 2: Thermal Output of Computing Components

Component Qty Max
Temp.
(°C)

TDP
(1 unit, W)

Extended
TDP (W)

Intel® Xeon®
Processor E5-2699

v4

2 79 145 290

Arria 10 FPGA
Development Kit

1 45 100
(Dependent on

usage)

100

Total 390

It is known that mixed metals are being used in the liquid cooling
setup within the Crystal Rugged, which means that using a
water-based coolant will result in corrosion within the loop. As
such, it has been decided that the Koolance 705 Electrically
Insulative Liquid Coolant is the best option for coolant, as it
contains corrosion inhibitors and is known to be used for 2-3 years
before requiring replacement. This coolant, while more expensive
compared to alternative options, is expected to save time and
money over the duration of the competition, requiring infrequent
refills and maintenance. An additional benefit of the electrically
insulative coolant is that the cooling system can be placed above
the other electronics without concern. The top of the computing
rack is the optimal place for the cooling system as it provides an
open area for the fans to vent and allows for quick coolant refills.

Computing Platform Mounting Strategy

The compute rack was designed in Year 1 as a 3-level structure
constructed using thin-walled aluminum tubing attached together
by aluminum gussets and rivets. The main benefits of this
construction technique were that it allowed for a very lightweight
and cheap frame while also making use of exclusively off-the-shelf
components. By using readily available framing, design and build
time is cut down immensely. Acrylic sheets form the mounting
surface for the electronics on each layer. Heavy electronic
components that do not need to be accessed or serviced frequently
are placed on the bottom tier, which is sunken into the trunk. The
Crystal Rugged, radiator, switches and other critical components
are placed near the top so that they can be easily serviced during
testing. The exact component placement has been determined in
CAD and the compute rack has been sized such that empty spaces
are minimized.

Based on the review and analysis of the previous rack, a need was
found to improve port accessibility while increasing the storing
capacity of the rack. Currently, the hardware mounted on the lowest
shelf is virtually inaccessible. Also, since the Crystal Rugged is
front facing with ample wiring and tubing connections, the midspan

and other heavily used network devices require effort and time for
interaction while testing. As a result, a new design has been
modeled for this purpose and is shown below.

Figure 12: Compute Platform Year 2 Mount Design

It is made of off the shelf items including 8020 square extrusion of
size 1x1in. The bottom plate holds most of the electronics, while
the top plate holds only the radiator. The plate on front is used to
mount the kill switch, USB hub and Velodyne interface box. This
simplifies interaction from both the front and the sides. All the
wiring has been moved to the side by mounting the crystal on the
bottom plate clamps. A dedicated shelf for network switches allows
for easier alteration of sensor configurations. All the other hardware
stored below the top plate can be accessed by moving it on sliders
when required. A damping pad was also introduced to dampen any
induced vibration during motion.

Power Consumption

Power consumption on the vehicle is highly restricted by the
capacity of the 12V battery. The 60 kWh battery supplies a range
of sensors, radiators, switches, and the compute platform. To ensure
that the battery only needs recharging at reasonable intervals,
power consumed had to be strategically restricted and regulated.
This is to ensure that sensor scalability will not compromise battery
life in lieu of greater precision. From a power system perspective, it
is approximated that the total rated power consumption limit is 1
kW including power consumed by equipment in the front of the car.
Hence, to limit the scope to additional equipment non-native to the
vehicle, it is safe to say that our suite should consume no more than
800W of power. Initially, calculations were done based on
equipment datasheets and technical information to determine the
estimated worst-case loading. Later, these values were validated
through experimental measurements on the built power system.

Both the estimated power consumption breakdown and measured
values are presented in Table 3 below.

Table 3: Power Consumption by Component

Component Estimated Power
Consumption (W)

Average Measured
Power
Consumption (W)

DC-DC Converter 689.00 505.20

Compute Platform 659.00 -

900W Radiator 30.00 -

AC Inverter ~ 108.70 ~129.98

Network Switch ~ 8.40 -

Total 6 x PoE Injectors ~ 40.80 -

Total for 6 x Cameras 15.00 (maximum) ~ 12.48

Total for 4 x Velodyne
VLP-16 LiDARs

32.00 ~ 28.80

Total for 1 x Velodyne
VLP-32 (including interface
box)

~12.50 -

Circuit Breaker Block 82.00 ~ 52.84

USB 3.0 Hub 5.00 -

INS/GPS System 5.00 (1.80 Typical) -

Total for 6 x Continental
ARS430 Radars

72.00 ~ 46.12

Total (worst case) 879.70 ~ 688.02

There are three major power consuming modules in the design:
DC-DC Converter, Sensors & AC Inverter, and Circuit Breaker
Block. The DC-DC Converter powers the compute platform and
liquid cooling radiator in turn. The sensors used are powered
through the AC Inverter module which also powers the AC
components in the car. Finally, the Circuit Breaker Block powers
the other DC components in the car.

For design purposes, our system has been optimized with
scalability in mind. Thus, the design supports sensors with the
quantities detailed in Table 4.

Table 4: Maximum Number of Sensors Supported
Component Name Quantity

Supported

Velodyne VLP-16 LiDAR 4

Velodyne VLP-32C LiDAR 1

Continental ARS430 Radars 6

Blackfly 2.3 MP IMX249
Camera

3

Blackfly 3.2 MP IMX265
Camera

3

It should be noted that while the maximum power draw
theoretically exceeds 800W, this is only the worst case based on
documented specifications. However, these values are by far away
from the practical maximum power readings observed when testing.
Should there be a need to reduce power consumption further,
sensors impact analysis on both power and precision achieved can
be conducted to decide on which sensors are to be removed for
performance.

The main transition between power consumption in Year 2 from
Year 1 is sensor scalability. In Year 2, we scaled up our LiDAR
suite as well as our cameras as mentioned in the Hardware Design
Selection section of the report. Values presented in Figure 11
represent a comparison between the power consumption (both
theoretical and experimental) in Year 1 and Year 2. In particular,
using experimental values, there was only a 5.1% increase in power
consumption from Year 1 to Year 2. After analysing the impact of
the additional sensor, it has been determined that the vehicle would
be able to power the added sensors without compromising our
power restrictions mentioned above.

Figure 11: Power Consumption Analysis by Year

For the compute platform itself, a stress testing program was run to
achieve 100% load on all cores of the Intel Xeon processors as well
as the Arria 10 FPGA Development Kit before the current was
measured, and this resulted in a 500W load on the vehicle, which is
much less than the theoretical estimate of 689W. For the AC
Inverter, values may seem much higher than the theoretical
worst-case scenario. However, this is due to the power drawn by a
monitor connected which is used during development on the
compute platform. Despite that, the measured values validate our
assumptions about the estimated power draw. Hence, due to the
available headroom for hardware integration (for example, adding
additional cameras to our suite), the power consumption of the
vehicle is optimized for sensor scalability.

Bill of Materials

Cost Analysis

With generous sponsorship and additional external funding, the
team was able to procure numerous pieces of physical equipment
and software to ameliorate the implementation of the design. The
costs summary and a detailed bill of materials (BOM) can be found
in Appendix A. In summary, the total cost of the vehicle, sensors,
computing platforms, mounting and cooling and other
miscellaneous components added to the vehicle stands at $USD
132,789.15. Similarly to Year 1, the largest portions of costs fall
under the vehicle itself, followed by computing platforms, then
sensing. Cost efficiency determined by performance-to-cost
analysis and quality assurance were both crucial factors in each
purchase decision to ensure optimal performance.

Velodyne VLP-16 LiDARs

In Year 1, the VLP-16 LiDAR was determined to be the most
cost-effective sensor given its 360°, 3D distance and calibrated
reflectivity measurements. In Year 2, the team was the recipient of
generous donations of 3 additional VLP-16s and a VLP-32C.

Although the HDL-32E and HDL-64 were considered for their
higher resolution and increased FOV, it is possible to design similar
solutions using the sponsored sensors.

Blackfly 3.2MP GigE Camera

Since Year 1, PointGrey released a new Blackfly model featuring
the IMX 265 CMOS and a higher image resolution at the same cost
[1]. While the minor FPS drop was considered, the advantages of
the new Blackfly model would allow for significant image
resolution improvements at long range, a key feature for the Year 2
challenges.

Sensor Mounts

The Roof Rack and the Front Bumper mount were both designed
with cost efficiency in mind. Both mounts were made to be highly
adjustable in order to try out various sensor suite configurations,
saving cost through reusability. Additionally, some parts were
listed by Canada’s Special Import Measures Act, and as a result,
another criteria of design was to be sourced from Canadian
suppliers at reasonable cost [2].

Software Design Review
This section will review the design of WATonomous’ software
modules.

Software Architecture

The Year 1 software architecture was designed with consideration
for low-level, embedded software and higher-level,
decision-making software. A data pipeline was designed to describe
the interactions between different components of the autonomous
vehicle’s software stack. These components, referred to as nodes,
were implemented as standalone executables using the Robot
Operating System (ROS) framework. In Year 2, the functional and
organizational advantages of decoupling our software tasks with
respect to the ROS nodes are still leveraged, allowing our
production and consumption of data to benefit from built-in
concurrency, open source libraries and packages for robotic
applications within the ROS community. The general software
architecture is shown in Figure 12 below.

Figure 12: General Software Architecture

This effectively caused the formulation of subteams that contribute
to the software architecture. These software subteams are broken
down as follows.

Sensor Fusion
The Sensor Fusion subteam ensures that the raw data from various
sensors is accurate, filtered and synchronized before it is provided
to the software subteams.

Perception
Perception primarily deals with computer vision algorithm
development required to accurately detect and classify objects of
interests, such as pedestrians, cyclists, road markings and traffic
control objects.

Processing
Processing is responsible for tracking the positions of objects
identified by Perception, fusing the detections and classifications
from Perception into a unified internal representation of the car’s
environment, as well as localizing the vehicle onto the provided HD
Map.

Path Planning
Path Planning uses the environment it receives from Processing to
plan the trajectory and velocity the car should travel based on the
appropriate behaviour when encountering pedestrians, cyclists, road
markings, traffic control objects. This subteam also provides the
waypoint management system as well as the controllers necessary
to maintain the target path.

Embedded Actuation (Vehicle Output)
This subteam is the endpoint between the software systems and the
existing systems in the vehicle. Their main task for the software
architecture is to provide the interface between the Path Planning
controllers and the vehicle CAN bus.

User Interface
The User Interface subteam is tasked with producing a graphical
interface to allow an end user to interact with the autonomous
vehicle, in addition to being able to show an overview of the
vehicle’s status. Additionally, this component provides
visualizations for each node’s output for debugging purposes.

There are additional subteams that do not have their own ROS node
as their work is not directly required for the vehicle to be
autonomous. These are broken down as follows:

Global Mapping
In Year 2, Global Mapping remains a subteam focused on meeting
the Global Mapping challenge: providing an application allowing
for location search as well as routing from a point A to a point B. It
is expected to integrate this module into our global path planner by
Year 3.

Simulation
In Year 2, the Simulation subteam’s purpose is to meet the
Simulation challenge’s requirements: incorporate our autonomy
components into the simulated agent’s behaviour within provided
simulation environment.

DevOps
The DevOps subteam is in charge of ensuring that the various
modules and components created by the subteams are able to be
brought together. Tools are built to facilitate continuous integration
and development environment setup.

Sensor Fusion Algorithm and Computer Vision

The first step in this pipeline is perception. The perception team
consumes processed images from the cameras mounted on the
vehicle to produce a data representation of the forward road.
Overall, there are four significant road features in the challenge:
roadlines, traffic signs, traffic lights, and other 3D objects.

Roadline Detection

Roadlines include lane lines, crosswalks, road boundaries, stop
lines and parking lines. These detected roadlines are used to
construct a map of the vehicle’s surroundings, and to help the
vehicle make informed decisions in its environment. To detect road
lines, an image taken from the left camera is resized to 512 x 512
pixels and are inputted into a semantic segmentation neural network
that produces a binary output image. The binary image highlights
locations of road lines in the image, where pixels corresponding to
road lines are white and all other pixels are black. A neural network
approach was selected instead of heuristic computer vision

approaches because the neural network approach is more robust to
changes in lighting conditions and in roadline colors, and will
reduce the need for heavy calibration work to be done once the
team arrives at the competition site. After numerous testing and
tuning, the SegNet semantic segmentation model with skip
connection was selected as the neural network to be used due to its
high performance in intersection over union (IoU) when tested on
validation datasets [3]. The IoU defines the overlap percent
between a ground truth label and a predicted label, and is a metric
used to quantify the similarity between computer vision predictions
and truth labels.

After the binary roadline image is generated, the next step is to
perform a bird’s eye view (BEV) image perspective transform to
restore proper proportion and achieve constant scale in both image
width and height directions. Distances in real-world space to the
detected road lines can be then calculated. To perform a BEV
transformation, a rectangle is created on the flat ground in front of
the camera, which will appear to be a trapezoid. The four vertices
of the captured rectangle are then projected onto a rectangle in a
destination image using the OpenCV perspective transform method
[4]. A conversion scale from pixels to meters can be applied in both
x and y directions to obtain real world distances.

After BEV transform, the Probabilistic Hough Transform is applied
using the OpenCV library to detect straight road lines, including
stop lines and parking spot lines [5]. The straight roadlines are then
further classified into stop lines and parking lines using the slope of
the straight lines. A polynomial regression algorithm is used to
localize and fit curved lane lines in the image. Figure 13 illustrates
the road line detection software pipeline.

Figure 13: Roadline Detection Software Pipeline

Image Object Classification

Another challenge tackled by the perception modules of the vehicle
involve both detecting and classifying objects in an image. Objects
of interest for the vehicle to detect include traffic signs, traffic
lights, and pedestrians as these objects greatly influence the future
path planning behaviour of the vehicle. Object detection neural
networks were chosen to localize and detect objects of interest, due
to their robustness and invariation to image noise and ability to
learn features of objects.

Due to the broad scope of the object classification problem, the
challenge was divided into several subproblems, with different
neural network architectures defined for different use cases of
detecting specific objects. Traffic signs were detected using Single
Shot Detector (SSD) with ResNet-50 feature extraction method [6].
This architecture was chosen for its lightweight computation and
fast inferencing speed, as well as its accuracy. Traffic lights and
pedestrians were detected using the YOLOv3 neural network
architecture [7]. The YOLOv3 architecture was chosen for its fast
real-time inferencing speed, as the detection requirements for traffic
lights and pedestrians was strict and needed fast update rates to
track objects quickly. Regardless of the neural network

architecture, each object detection network returns the pixel
bounding box coordinates and classification probabilities for each
object detected in the image. These bounding box coordinates are
sent to the Processing software modules to be used for further
cleaning and filtering of detections.

A mix of open-source datasets and data synthesis were used in
training the object detection networks. For training a YOLOv3
network in detecting pedestrians, the KITTI and the Tsing-Daimler
Cyclist Detection Benchmark datasets were used. Due to the
limitation in data on specific Michigan traffic sign and light models
required by the Year 2 Challenges, synthetic data was used to train
the neural networks. The Cut, Paste and Learn method is the
primary method of generating new data, and works by injecting
different objects cut-outs to randomized locations in background
scenes, generating automatic label annotations in the process [8].
Data augmentation is utilized to add further variation in the data to
further represent real-life conditions, including illumination, motion
blurring, object scaling, rotation, color variations, and pixel-wise
noise. The amount of variation of the augmentations will depend on
real-life data and must be estimated to best represent real-life data.
Background images are provided by the BDD100K (Berkeley
DeepDrive) dataset to provide realistic urban environments as taken
by the vehicle’s cameras. Figure 14 shows an example of the data
synthesis method.

Figure 14: Example of Image Synthesis of Brightness, Motion

Blur, and No Data Augmentation (Top to Bottom)

LiDAR Object Detection

To detect obstacles in 3D space for the vehicle to react to, a
conditional euclidean clustering approach is used to tackle this
problem. A 3D point cloud containing all points of the environment
detected for a single frame captured is sent to the clustering method
to be segmented, with any points from the ground removed before
further analysis. This algorithm uses a flood-fill approach to create
clusters by searching locally throughout the LiDAR point cloud to
find points that are defined to be nearby neighbours to each other
[9]. Constraints for defining the closeness of each point includes the
physical euclidean distance, smoothness, and color similarity [9].
After all clusters defining different objects in the point cloud have
been found, 3D bounding boxes are drawn around each cluster and
outputted as detected objects to be used for further processing.

High Level Data Fusion

High Level Data Fusion (HLDF) is the module responsible for the
consolidation of the discrete data sources from the Perception
modules into a single data stream, as well as association between
different types of objects. HLDF takes as input the obstacles and
road lines detected by the various Perception modules. It produces
as output a ROS message, to be consumed by the Object Tracking
module, that contains all relevant data from Perception, such as
roadlines and obstacles. HLDF fuses bounding boxes together from

Perception over each individual frame, and also performs roadline
matching and fusion.

For roadline fusion, the incoming roadlines are described as a
polynomial with 2 points describing the end points of the detected
line. HLDF maintains a current best estimate of the lane lines based
on previous seen lane lines. Incoming lanes are then matched with
the existing lanes by subtracting the polynomials describing both
lanes and integrating the remaining polynomial over the area for
which the polynomial is valid. This gives an area which describes
the closeness of the 2 road lines. Roadlines are then matched based
on which polynomials have the minimum area between them.
Subtraction and integration of polynomials is computationally
efficient, and the resulting metric provides accurate lane matching
for 93% of detected lane lines from data taken from the year 1
competition.

HLDF also performs bounding box association within individual
frames. Separate bounding boxes are provided from both image and
object-based detection methods and must be associated. The
LiDAR provides unlabelled data, while the cameras provide
labelled data. As a result, class is not taken into account for data
association. The data association is performed solely on the basis of
pose and dimension of bounding boxes. Any bounding box pairs
whose centroids are further than a set threshold apart, as an
efficiency measure, are ignored as possible candidates for
association. For any classified bounding boxes, the Intersection
over Union (IoU) score is then computed for any unclassified
bounding boxes with centroids sufficiently close to it. The
unclassified bounding box with the highest IoU is then considered
associated with that classified bounding box. The 2 bounding boxes
are then averaged together, and the label from the classified
bounding box applied.

Object Tracking

After fusion and data association has been performed in HLDF, the
current environment is sent to the Object Tracking module. Object
Tracking is responsible for estimating velocity and acceleration for
any relevant objects. It takes as input the output object messages
from High Level Data Fusion, and outputs another environment
message, with updated velocity and acceleration fields, to the Path
Planning modules.

Object tracking receives input from High Level Data Fusion. It then
takes the received bounding boxes, converts their position relative
to the car to an absolute position, and attempts to match bounding
boxes using a Euclidean distance heuristic. A Euclidean distance
heuristic was chosen for ease of computation and use. Euclidean
distance may be unsuitable for future years, when scenes may
become more cluttered, but when tested in sparser scenes like those

expected in competition, it performs accurately. If there is no
bounding box within a set distance threshold to match to, then the
object is registered as a new object. Once all existing tracked
bounding boxes have been matched to new measurements, extra
checks are performed to see if an object is still relevant, or if it was
a false positive, based on how many frames it has been since the
object was last seen, and how many frames it has been seen in total.

As each object is detected and added, an associated Extended
Kalman Filter (EKF) is also created. After matching occurs, the
EKF takes as input the updated position measurement of any
detected object, and uses that to estimate the true position, velocity,
and acceleration of the object. An EKF was used due to the known
robustness of the algorithm for estimation in this type of task, as
well as the relatively low computational load as compared to other,
more complicated object tracking methods. The positions,
velocities, and accelerations of all tracked objects are then added to
an environment message and sent to the Path Planning modules for
use.

Localization

The localization aspect of the pipeline estimates the car’s pose on
the HERE HD map and to generate a local map of the car’s
surroundings. Both outputs are passed directly to the path planning
module, where the behavioral planner will use the generated map to
set the vehicle’s goal and the costmap will be constructed
accordingly. Considering how important it was to accurately follow
the roads, estimating the car’s location in relation to the HERE map
is a main focus of the algorithm.

The localization algorithm uses four sources of input: LiDAR,
IMU, GPS, and lane detections from the perception module.
Localization also uses 2 third party packages, in Google
Cartographer and the ROS “robot_localization” package. The
LiDAR, IMU, and GPS data are passed to Google Cartographer
which generates an occupancy grid of the car’s surroundings and a
location estimate. This estimate and the lane detection information
are then passed to the “robot_localization” package to be integrated
into a final output.

LiDAR data was necessary to allow Cartographer to generate the
occupancy grid. It also significantly contributes to the accuracy of
Cartographer’s estimate. To use the full LiDAR scan, we run
Cartographer in 3D mode which necessitates the use of the IMU, as
Cartographer requires IMU data to initialize the car’s orientation.
The GPS data and lane detection source are also used to help ensure
the location estimate agrees with the HERE map.

Figure 15: The Localization Software Flow

Cartographer and the “robot_localization” package were selected to
be able to use all of the available inputs. The “robot_localization”
ROS package was selected to augment the Cartographer estimate
with the lane detection information. When tested with internal data,
Cartographer was also found to have the highest accuracy, and ran
in real time, as opposed to other considered options.

After receiving the location of the road centre line from the
perception modules, our algorithms adjust our current location
estimate to agree with this input. The new location estimate is
created by shifting the car’s position closer to or further from the
corresponding lane line in the HERE map. It also recalculates the
car’s orientation depending on orientation of the lane line relative
to the vehicle.

Mission Planning Algorithm

The motion planning algorithm is addressed by two subcomponents
of Path Planning: Global Planning and Local Planning. In Year 3,
Global Planning will happen at the HD Map level; the end user
would provide some destination and the global planner will route
from the vehicle’s current position to the destination. For Year 2, it
is instead asked to integrate a waypoint system; the global route
consisting of waypoints encodes the navigation information
required for the vehicle to reach its destination. Once the global
plan is completed, the Local Planning module is responsible for
planning a path within the local environment, i.e. the region of the
world that the vehicle’s sensors can perceive.

Figure 16: The Motion Planning Software Pipeline

Global Planning

The purpose of the Global Planning module is to precompute
relevant data for each Year 2 challenge given the HD map. The
result of this module is an approximate list of goal states used by
the Local Planning module. For Year 2, the global plan is
determined by either traffic signs, such as in the case of the traffic
control challenge, or by waypoints. When given waypoints, the
global planner pre-computes a list of turning directives using the
HD Map, this list is subsequently used to determine the lane the
vehicle should follow.

Local Planning

Given the vehicle’s perceived environment from Processing and the
desired lane from the global planner, the Local Planning module
finds the optimal path forward within the environment while
abiding to traffic constraints.

Behavioral Planner

Figure 17: Behavior Planner’s Finite State Machine

The first step to create a path with the given environment from
Processing is to decide on a goal line (which is a line segment,
velocity, and acceleration), that lies somewhere in the provided
environment. The goal line decision algorithm relies on a finite
state machine (FSM) to keep track the current state of the vehicle.
The vehicle’s state includes attributes such as acceleration and
maximum speed. The Path Planning team chose to use a FSM to
keep track of vehicle state since it allows state transitions to be
dependent on both current state and an external trigger.
Specifically, the FSM transitions are triggered by certain
characteristics of the consumed env struct (environment structure);
for example, an env struct with a vehicle velocity of zero would
transition from the slowing state to the stopped state. Additionally,
the transitions are also triggered by predefined internal triggers,
such as a timer that triggers when the vehicle has been at the stop
line for two seconds. Goal lines are generated based on the current
FSM state and a newly consumed env struct. For example,
FSM(stopped) + env_struct(open_road) would produce a goal line
zero meters ahead with a velocity of zero, and FMS(accelerating) +
env_struct(open_road) would produce a goal line at points of the
env struct with maximum velocity.

Costmap Generation
The next step in the Path Planning task is to plan a trajectory
through the augmented environment structure to the goal line. In
order to use graph search algorithms, which is explained in detail in
trajectory planning section, the environment has to be converted
into something that can be reasoned about computationally: in other
words, a costmap. The high-level idea of a costmap is that things
that the vehicle should not move over (e.g. road borders and
obstacles) are assigned a high cost. Therefore, the area of the
costmap where a road border lies is assigned a higher cost than the
area where a lane line is. Obstacles are assigned the highest

possible cost, and open road is assigned a minimal cost. Similarly
to Year 1, the Path Planning team chose to use a costmap
representation of the vehicle’s environment because it works well
with the trajectory rollout algorithm [10].

To understand the complex environment, we need a way to convert
the environment into a data structure which the computer can
understand. A Costmap is a 2D matrix which encodes the semantic
“cost” value of features into the environment as numbers or “cost
values”.

Everything that affects the costmap is referred to as an “object”
(roadlines, pedestrians, traffic signs, etc.). WATonomous has
decided to draw a distinction between two classes of objects: Static
objects and Occupiable objects.

Static objects do not have state, and only influence the region of the
costmap that they physically occupy. An example of a Static object
is a parked vehicle, or a Road Line.

Occupiable objects on the other hand, do have state, and their
region of influence depends on that state and is not restricted to the
space they occupy. An example of an Occupiable object is a Stop
Sign. The state of a stop sign (blocking or passable) depends on
how long the vehicle has been waiting at the stop sign. The region
of influence of the Stop Sign is not only where it stands in the
ground, but also in the road next to it.

Static objects are represented by bounding boxes with a pose
(position and rotation). There are multiple steps taken to draw a
Static object onto the costmap. First, padding is applied to each
object or line based on the car’s size and the importance of the
obstacle. Objects that the car should not hit generally have higher
cost. For example, parked cars may have a wide, high cost padding
to avoid collisions. Crossable lane lines might have a thinner, low
cost padding. After padding, the object is translated to the desired
location and orientation and added to the costmap using matrix
addition. To optimize the Year 2 costmap, Eigen was chosen for its
efficient matrix manipulation tools. These tools allow the team to
efficiently blur the obstacle, rotate the obstacle and add the obstacle
to a specific area of the costmap without changing or affecting the
other parts.

Drawing an Occupiable object is more complex because it depends
on the object's state. Each class of Occupiable object (Traffic Light,
Pedestrian, Stop Sign, etc.) contains its own FSM which gets
updated every time Path Planning receives a new Environment.
(insert at least one FSM diagram example of an Occupiable Object
FSM).

The region of influence of an Occupiable object class can be
queried at any time, returning a Costmap Layer (which is just a 2D
matrix of cost values). The returned layer depends on the state of
the object. For example, a Stop Sign in the “blocking” state returns
a layer containing a maximum cost strip blocking the road next to
the sign, while a Stop Sign in the “passable” state returns an empty
layer.

Figure 18: Costmap Example

Trajectory Planning
Another requirement of graph search algorithms is a discrete set of
next vehicle states (a 2D position). Therefore, now that the current
environment is shown in the costmap, a selection of optimal
(minimum cost) next vehicle state can be computed given a current
vehicle state. The discretization of possible next vehicle states is
done by interpolating over the car’s possible turning angle, at some
constant radius magnitude.

The cost approximation of moving from the current vehicle state to
the next state is done by interpolating over intermediate vehicle
states of the twist the vehicle would follow to get to that next state,
assuming a constant turning angle. In Year 2, we’ve further tuned
the parameters relating the vehicle speed to its maximal twist angle
by distance in order to ensure that the vehicle states generated are
possible for the vehicle. The number of intermediate interpolated
states is equal to the arclength of the twist, divided by the
magnitude of the interpolation, thus a smaller magnitude means a
more accurate discrete approximation of the vehicle’s path along
the twist. The cost at each intermediate vehicle state is summed,
and that sum is used to approximate the cost of the twist necessary
to get from the current state to a next state. The distance from the
goal line of each next state is also factored into the state’s estimated
cost, since Path Planning wants to choose states that move the
vehicle close to the goal line. Pseudocode for this state generation
is available in Appendix B.

The A* search implementation that actually generates the optimal,
minimum-cost path (i.e. a vector of vehicle states) is given the
costmap, an initial vehicle state, and a goal line [11]. From there the

algorithm generates the possible next vehicle states and puts those
states into a priority queue ordered by minimum cost. The
algorithm then pops the minimum cost state off the queue and
recursively calls itself, finding the optimal next state from the first
optimal next state. The recursive A* search continues until the
vehicle state popped off the queue is close enough (within 1 meter)
to the goal line, and then the path of optimal vehicle states that
were taken to reach that last vehicle state is returned. This
algorithm is shown visually in Figure 19 below.

Figure 19: Visual Representation of A* Trajectory Rollout

The last step in the Path Planning task is to ensure that the physical
vehicle follows the optimal path found as closely as possible. This
is done using feedback controllers, one to control the car’s wheel
angle, and one to control the car’s speed. The implementation of the
controllers is described in the Motion Control section of this report.

Local Planning Simulator
WATonomous has developed a custom simulator implemented in
C++ using GLUT. The simulator is used to test the local planning
algorithms in real time using a manually drawn environment. The
simulator provides a GUI on which the user can draw an
environment using key presses and mouse clicks. For example, the
user is able to add a lane line into the environment by clicking to
add points to the polyline that represents the lane line.

After the environment has been drawn, the costmap produced by
the static and occupiable object generation algorithms is rendered
on top of that environment. After the costmap is rendered, the
trajectory planning module is called, and the resulting path is

plotted on top of the environment and costmap. This allows
developers of those local planning algorithms to iterate on their
design, while quickly confirming that they have not regressed the
output costmap in a simple and visual way.

Figure 20: Local Planning Simulator

Motion Control Algorithm

Feedback Control

Similar to Year 1, two Feedback Controllers are invoked to
maintain the speed and heading of the vehicle by correcting
tracking errors. Both Controllers take the current Path and the
Current State of the vehicle as input. The Current State is a reading
of the vehicle’s current location and velocity from the GPS and the
IMU, whereas the Path is passed down from the Trajectory Planner
module.

A PID Controller is used to correct tracking error for the speed. To
compensate for the actuation latency (the delay between the time of
command sent and the time of physical activation), the torque
output is calculated as a combination of three error terms:
Proportional, Derivative, and Integral. The Proportional term aims
to correct the error between the current and target speeds, the

Derivative the rate of change in the current speed, while the
Integral the accumulation of these errors over time (regardless of
how small each error is at its point in time).

A Pure Pursuit Controller is used to correct tracking error for the
steering angle [12]. Similar to the logic used in Year 1, the Next
State is chosen based on the Current State’s speed. The higher the
speed at which the vehicle is driving, the farther away the Next
State can afford to be. There is, however, one significant change
introduced into this year’s implementation. After the tentative Next
State is selected in the previous step, the steering angle required to
arrive at this tentative State given the Current State is calculated.
The difference between this steering angle and the Current State’s
angle acts a scaling factor to reselect the Next State closer to the
Current State to avoid cutting the corner on sharp turns. The output
of this Controller is thus the steering angle in degrees that would
take the vehicle on an arc to hit the carefully chosen Next State.

Further post-mortem analysis and reflection upon the results of year
1 brought out multiple critical failures that were later improved
upon thoroughly and systematically in year 2. The wheel angle and
speed controllers were originally implemented from scratch in C++,
which necessitated custom error-prone implementations such as
finding the Next State along the Path polyline. This led to an
increase in the time needed to fully test the controllers’
functionality, and to tune their integration with Trajectory Planning.
In addition, the lookahead value used to find the Next State only
took into account the speed of the vehicle, and not how it was
turning. This resulted in erroneous edge cases, for example some
maneuvers, (e.g. taking a sharp turn), require a much smaller
lookahead than others, (e.g. driving straight), in order to not cut the
corner of the turn. Furthermore, there was no replicable and reliable
way to test the controllers in simulation. To gauge the performance
of the controllers under certain parameter values, the vehicle had to
be physically towed to the test track and repeatedly run in the same
turn manually with different parameter values. This led to a huge
time loss spent on the test track in order to tune the parameter
values that were proven to be suboptimal during the competition.

For this year, to circumvent the aforementioned issues, the design
and implementation process of the two Controllers is strategically
migrated to MATLAB/Simulink [13]. The program provides ease
of use in modifying the gains in real time and allows incorporation
of Vehicle Dynamics blocks for further tuning that takes into
account the physical limitations of the vehicle. The Ziegler-Nichols
method is employed to select the initial values for the tuning
parameters. More specifically, Kd and Ki are initially set to 0 while
Kp is increased gradually from 1 till the vehicle’s speed oscillates
consistently around a certain speed. The oscillation range and Kp
are used to derive the starting values for Ki and Kd by following the

mathematical formulas shown in [14]. These parameters are
subsequently fine-tuned through a manual trial and error process.
The same process is repeated for 5 different speeds ranging from 5
mph to the maximum speed limit of 25 mph to obtain a set of PID
parameters. The set is then linearized to account for all speeds
within said range. The block diagram of the Feedback Control
module is available in Appendix C.

CAN Interfacing

In order to properly execute the calculated trajectories and receive
feedback control signals, a robust communication interface is
required to structure and encode controls commands to the vehicle,
as well as receive, decode, and relay feedback information from the
vehicle’s internal controllers. This interface was created using the
well-known CAN communication protocol. The robust
communication is achieved through concurrency and parallelism in
decoding and encoding messages. Each state of the vehicle is
maintained through its own thread or process, to mitigate data loss
and corruption, as well as greatly decrease latency between the
vehicle and the computing system. Information is channeled
through the vehicle’s three CAN buses: High Speed (HS), Chassis
Expansion (CE), and Low Speed (LS). For receiving feedback
information from the vehicle’s internal sensors, corresponding
addresses are queried and queued to gather the desired message bit
packets. These message packets are filtered and manipulated to
extract the physical signals from the vehicle (e.g. acceleration,
steering angle, brake pressure, etc.). This data is then provided to
the feedback controllers for real-time use, as well as to sub-teams
such as local mapping, planning, and sensor fusion.

In addition to effectively receiving information from the vehicle,
safety-critical control commands need to be sent to and understood
by the vehicle for real-time control. To achieve this on a low-level,
commands for steering, braking, and torque must be periodically
transmitted to keep the vehicle in a controllable state. Once the
vehicle is in the correct state, physical signals (e.g. torque requests)
are translated into a valid message byte packet (which includes
protection signals and active rolling counts) and sent to the
receiving control unit on the CAN bus. There are separate feedback
signals specific to the communication interface to ensure messages
have been sent and received correctly at the desired timestamp.

In tandem with the safety-critical control, important indication
signals are controllable with the CAN interfaces. Indications
including left/right blinker lights, hazard lights, and high beam
lights are controllable with requests from the path planning module.
These indicators will be triggered during lane changes, intersection
turnings, parking, and under tunnel navigation.

Safety Concept Review

Building on top of the testing safety protocol of Year 1, each clause
was revised and deemed to be relevant for Year 2 as well.

One of the additions of Year 2 is the front bumper rack. The main
structure of the front bumper mount was designed to carry 122 kg
of weight in static loading conditions and 5G forces in dynamic
loading conditions. Using a factor of safety of 1.2, shocks and
vibrations from bumps in the road are mitigated.

Figure 21: Front Bumper Mount Bolts

While designing the front bumper mount, it was made sure that
aluminum bolts will be the failure point in case of any accident, and
a metal cable was used, as shown in Figure 21 above to hold the
mount from falling off the car, in case of impact.

For electrical safety, thecompute and power systems have been
equipped with fuses throughout to protect the vehicles against the
risk of excess current draw or faulty equipment. For compute
safety, the motherboard holds three temperature sensors and
cooling units to protect the vehicles compute unit against the risk of
extreme internal temperatures. Proper wires with sufficient gauge
and insulation were selected to protect the vehicle against risk of
cable splicing and power surges, preventing the event of an
electrical fire.

For CAN communication with the vehicle, many safety layers are
implemented on both a software and hardware level. Error states
and diagnostic codes are tracked by the computing platform at a

high frequency to detect any faults in the internal control units. If
the error state is non-critical to the controls of the car, or
non-indicative of corrupt data, the error is simply logged for later
analysis. In any other case, the vehicle will alert the central state
machine to safely shut down the process and return control to the
safety driver. All states for the central state machine are displayed
on the user interface for driver information. In the event where
communication is cut off from one of the three CAN bus lines, the
vehicle will return control to the safety driver and the entire
software pipeline is temporarily terminated. The safety driver also
has full manual override capabilities while in an autonomous state,
and all actuation commands are blocked when a manual override is
triggered.

In addition, an autonomous control box allows for a physical
electrical disconnection between the vehicle’s ECUs and the
computing platform, while ensuring power to each CAN bus line is
adequate. When in the vehicle is in an autonomous state, meaning
the connection is established to the vehicle’s ECUs, the blue safety
light will be turned on to warn bystanders of the vehicle’s state. In
addition, high insulation and twisted pair DB9 cables are used to
prevent any data corruption caused by electromagnetic interference
between the computing system and the control MCUs.

Aesthetic Design and Usability

Figure 22: WATonomous Decal Coating

The above image demonstrates the approach WATonomous has
taken to the exterior design. The silver vehicle in the top left of the
above image is the original Chevrolet Bolt. The team colour, blue,
was chosen as the main base for it represents reliability, integrity
and unity. It also brings out a sense of safety which has always
been WATonomous’s priorities and ensures the consumers feel
secure and protected in the presence of the vehicle. The team name
is placed stylishly in white on the left side of the vehicle along with
multiple decals from various sponsors, which further emphasizes
stability thus building rapport and instilling trust with the
consumers in WATonomous.

When integrating additional parts to the vehicle, the mechanical
team was mindful of symmetry. The room rack does take away
from the symmetry of the car because it was designed in way that is
aesthetically pleasing to the eye by not drawing much attention.
The wing shape lidar design has two cameras facing outward on
each side as to not break the established pattern of symmetry. The
outward direction of the wing shape lidar design adds a rotational
effect around the focal point. The front bumper was architected in a
way that keeps the idea of balance in the mind’s eye as the
symmetrical design is easier for the mind to process. It provides a
focal point that draws the eye’s attention immediately and balances
out the visual weight of the car.

On November 22nd, 2018, WATonomous and St. Paul’s
Greenhouse came together and hosted a Greenhouse event
discussing social responsibility with a focus on autonomous
vehicles. Social responsibility events help to educate the local
community and possible consumers on the benefits of autonomous
vehicles. At the Greenhouse event, the WATonomous team was
able to answer questions regarding potential dangers of autonomous
vehicles by providing research proven solutions. Public
engagement at events such as the Greenhouse event helps to
eliminate possible mental barriers that may stop potential
consumers from purchasing autonomous vehicles.

Equally important, WATonomous recognizes the importance of
government support in commercializing autonomous vehicles.
Earlier this year on January 22nd, 2019, the Minister of
Transportation Ontario, Hon. Jeff Yurek, visited the University of
Waterloo, where he formally announced that the province is easing
restrictions on its autonomous vehicle pilot program.
WATonomous was able to present its technology before the
Minister to further demonstrate the capabilities of autonomous
vehicles to the government. The team was then featured in an
article on The Record along with Hon. Jeff Yurek with the title
“Ontario driving ahead with expanded autonomous vehicle
program” [15].

Additionally, WATonomous engages with potential consumers on
social media through weekly postings and updates. Customers are
more likely to trust our autonomous vehicle because WATonomous
provides transparency to the general public. The WATonomous
Facebook page has a five-star rating and grew more than 54% since
the Year 1 challenge. The Facebook page now broke the 1,000
follower milestone in the Year 2 phase and totals 1,485 posts as of
March 24th, 2019. WATonomous’ active marketing strategy acts as
the bridge between consumers and autonomous vehicles.

Conclusion
This report presents a detailed description of the technologies used
by the WATonomous team in preparation for Year 2 of the SAE
AutoDrive Challenge. The hardware was chosen to be
performance-effective and cost-effective. Redundancy in selected
sensors provided the element of safety. Electrical and thermal
analyses were conducted to determine power draw and concluded
that our previous cooling system was still appropriate. Building
upon the design philosophy of Year 1, design considerations were
made in anticipation of future challenges as the competition
progresses, such as the adjustable sensor mounts.

The Software design was architected in a modular way to allow
multiple teams to tackle the problems in isolation and to easily
integrate the components once they were completed. Implementing
the software stack as a set of ROS nodes improved runtime
performance by leveraging their built-in concurrent nature and had
managerial benefits by mapping directly to the team structure.

This year, a safety-first, robust and high-performance approach to
the Year 2 challenges was accomplished. The WATonomous team
is proud of their work and looks forward to the competition and
making the world a safer place.

References
1. Blackfly 2.3 MP Mono GigE PoE (Sony Pregius IMX249) Technical Specifications, PointGrey. [online]

https://www.ptgrey.com/blackfly-23-mp-color-gige-poe-sony-pregius-imx249.
2. Special Import Measures Act, Government of Canada. https://laws-lois.justice.gc.ca/eng/acts/s-15/.
3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, 2016. https://arxiv.org/pdf/1511.00561.pdf
4. Geometric Image Transform, OpenCV Open Source Software, Intel Corporation, USA, 2017
5. Feature Detection, Feature Detection - OpenCV 2.4.13.7 documentation.

https://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html.
6. Liu, W. et al. (2016). SSD: Single Shot MultiBox Detector. arXiv. https://arxiv.org/pdf/1512.02325.pdf.
7. Redmon, J. and Farhadi, A. (2018). YOLOv3: An Incremental Improvement. [online] University of Washington.

https://pjreddie.com/media/files/papers/YOLOv3.pdf.
8. D. Dwibedi, I. Misra, M. Hebert. Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection, The Robotics Institute,

Carnegie Mellon University, August 2017. arXiv e-print services, https://arxiv.org/pdf/1708.01642.pdf.
9. Documentation - Point Cloud Library (PCL). Pointclouds.org. (2019).

http://pointclouds.org/documentation/tutorials/conditional_euclidean_clustering.php.
10. base_local_planner, ROS Wiki, http://wiki.ros.org/base_local_planner.
11. Introduction to A*, Introduction to A*, http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html.
12. Automatic Steering Methods for Autonomous Automobile Path Tracking , Snider, Jarrod M. (2009).
13. PID Controller Tuning in Simulink. Mathworks.com, MATLAB & Simulink.

https://www.mathworks.com/help/slcontrol/gs/automated-tuning-of-simulink-pid-controller-block.html.
14. Ziegler–Nichols Tuning Rules for PID, Microstar Laboratories, http://www.mstarlabs.com/control/znrule.html
15. Brent, Davis. Ontario Driving Ahead with Expanded Autonomous Vehicles Program,

https://www.therecord.com/news-story/9137924-ontario-driving-ahead-with-expanded-autonomous-vehicle-program/

https://laws-lois.justice.gc.ca/eng/acts/s-15/
https://arxiv.org/pdf/1511.00561.pdf
https://arxiv.org/pdf/1708.01642.pdf
http://pointclouds.org/documentation/tutorials/conditional_euclidean_clustering.php
http://wiki.ros.org/base_local_planner
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://www.mathworks.com/help/slcontrol/gs/automated-tuning-of-simulink-pid-controller-block.html
http://www.mstarlabs.com/control/znrule.html
https://www.therecord.com/news-story/9137924-ontario-driving-ahead-with-expanded-autonomous-vehicle-program/

Appendix

Appendix A: Bill of Materials (BOM)

Appendix B: Trajectory Planning Pseudocode

Appendix C: Feedback Controller Algorithm

