

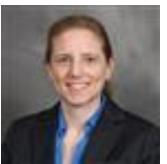
MathWorks Simulation Challenge Year 3

Mark Corless and Lauren Tabolinsky October 10, 2020

Agenda

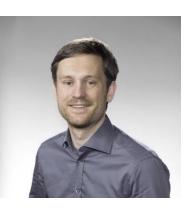
- Meet the MathWorks Team
- MathWorks offerings for teams
- Simulation Challenge
- New Products
- Questions

Team Mentors


- Seo-Wook
 - U Waterloo
 - U Toronto
 - <u>spark@mathworks.com</u>

- Kunal
 - Michigan Tech
 - North Carolina AT
 - kpatil@mathworks.com

- Shusen
 - Texas AM
 - Virginia Tech
 - szhang@mathworks.com
- Kim
 - Kettering U
 - Michigan State
 - <u>kmcgarri@mathworks.com</u>



The MathWorks AutoDrive Team

Christoph Hahn

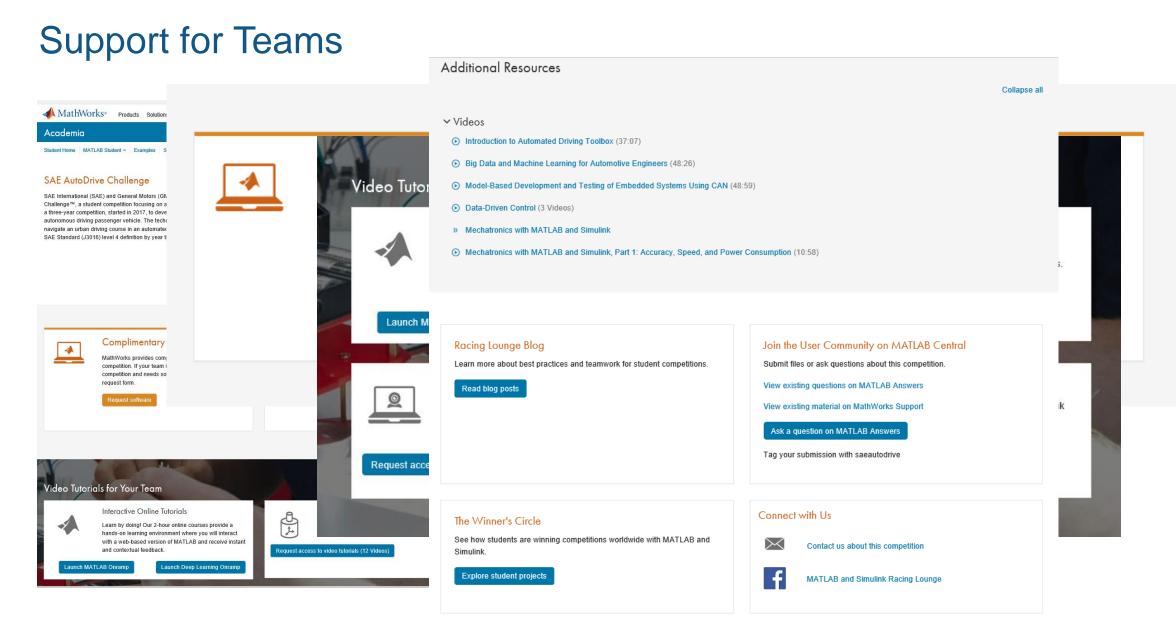
- Technical Lead
- <u>Christoph.Hahn@mathworks.de</u>

Swarooph Seshadri

- Technical Lead
- <u>sseshadr@mathworks.com</u>

Lauren Tabolinsky

- Academic Programs
 Manager
- <u>ltabolin@mathworks.com</u>



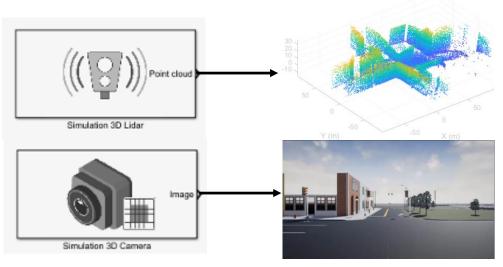
Mark Corless

- ADAS / AD Industry Marketing Manager
- <u>mcorless@mathworks.com</u>

AutoDrive Webpage

November Workshop

- MathWorks Workshop (SAE International HQ; Warrendale, PA)
- Dates: Nov. 14-15, 2019
- Agenda is being finalized and registration will open up next week



Simulation Challenge

- Last year's challenge was great!
 - 1st customers to see sensors for Unreal engine
 - Highlights
 - **U Toronto**: Best integration between real-world car development and simulation challenge
 - Michigan Tech: Best use of lidar sensor, IPCV and ROS for object detection
 - Texas A+M: IPCV and deep learning using MW tools
- We decided to make the challenge more open this year
 - Points (50 available) will be awarded
 - How has your team applied the core concepts using MathWorks' tools to help achieve the overall competition objectives?

MathWorks Simulation Challenge

for SAE AutoDrive year 3 competition

#	Task	Points
1	Synthesize data to test open loop perception algorithm	10
2	Synthesize data to test closed loop controls algorithm	10
3	Generate code from controls algorithm	10
4	Innovate	15
5	Reflect	5

MathWorks Simulation Challenge

for SAE AutoDrive year 3 competition

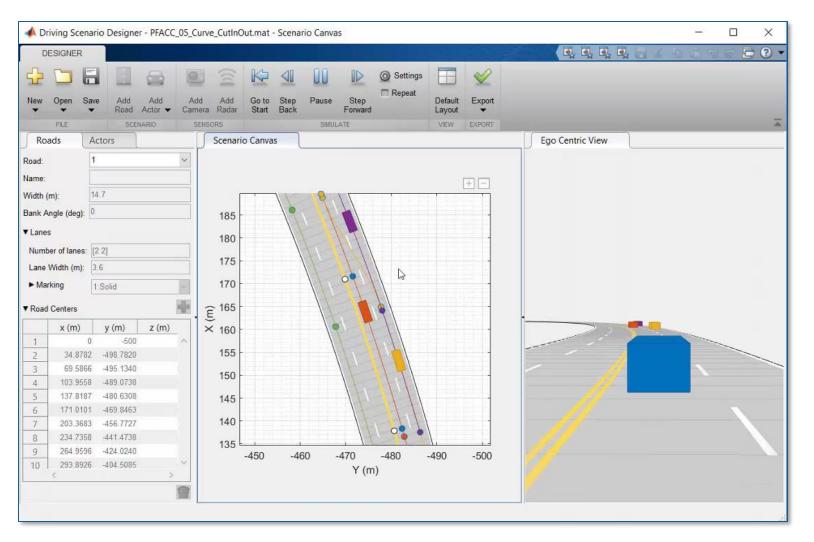
#	Task	Points				
1	 Synthesize data to test open loop perception algorithm a. What <u>algorithm</u> did you test and why did you choose it? (i.e. object detection, drivable path, localization, sensor fusion) b. How did you <u>synthesize scenario data</u>? (i.e. Unreal Engine, Driving Scenario Designer, sensor models, customizations) c. How did you <u>assess correctness</u> of the algorithm? (i.e. specify truth, assess metrics, automate testing) 	10				
2	Synthesize data to test closed loop controls algorithm	10				
3	Generate code from controls algorithm					
4	Innovate	15				
5	Reflect	5				

How can I design with virtual driving scenarios?

Scenes	Cuboid			
Testing	Controls, sensor fusion, planning			
Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)			
Sensing Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)				

How can I design with virtual driving scenarios?

Scenes	Cuboid	3D Simulation (Unreal Engine)			
	Ego-Centric View Sconecis Carneer				
Testing	Controls, sensor fusion, planning	Controls, sensor fusion, planning, perception			
Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)	Unreal Engine Editor			
Sensing	Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)	Probabilistic radar (detection list) Monocular camera (image, labels, depth) Fisheye camera (image) Lidar (point cloud)			

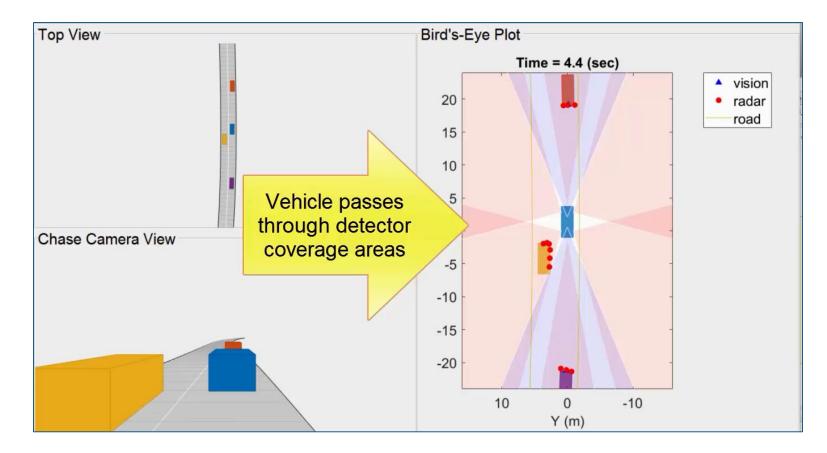


Graphically author driving scenarios

Driving Scenario Designer

- Create roads and lane markings
- Add actors and trajectories
- Specify actor size and radar cross-section (RCS)
- Explore pre-built scenarios
- Import OpenDRIVE roads

Automated Driving Toolbox[™] R2018a

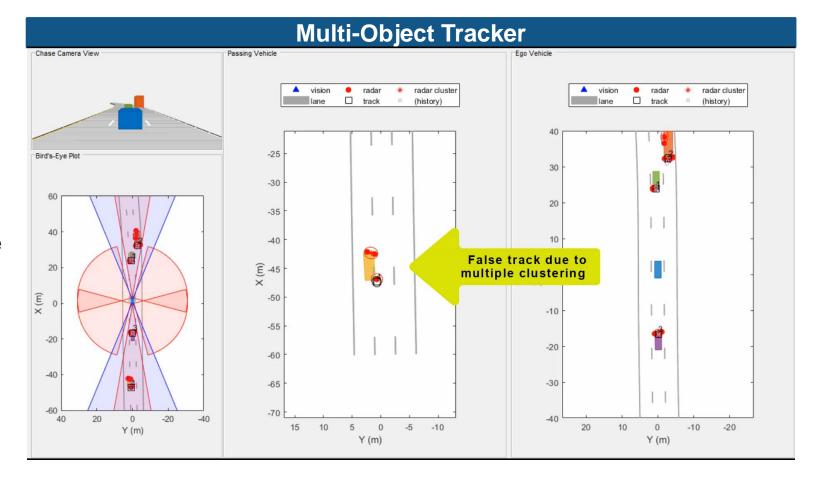


Synthesize scenarios to test sensor fusion algorithms

Sensor Fusion Using Synthetic Radar and Vision Data

- Synthesize road and vehicles
- Add probabilistic vision and radar detection sensors
- Fuse and track detections
- Visualize sensor coverage areas, detections, and tracks

Automated Driving Toolbox[™] R2017a

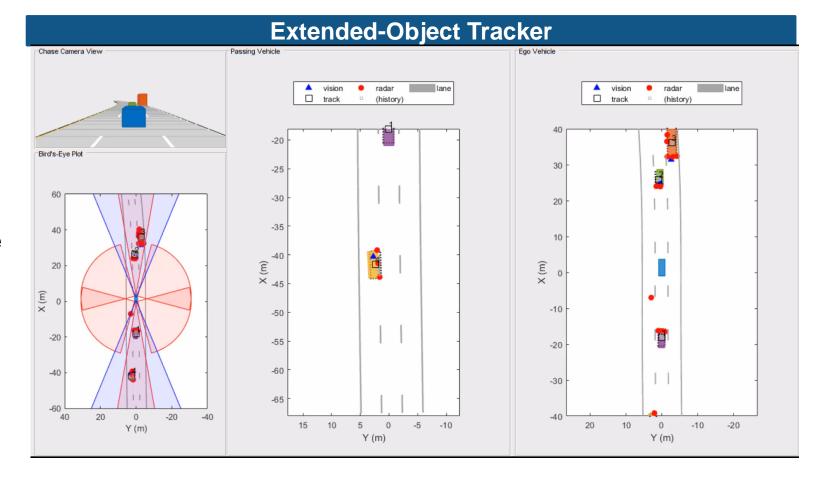

MathWorks

Design multi-object trackers

Extended Object Tracking

- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking ToolboxTM Automated Driving ToolboxTM Updated **R2019b**

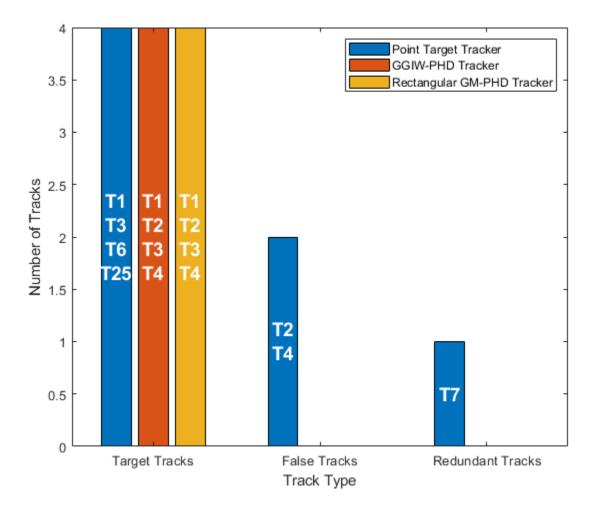

MathWorks

Design extended object trackers

Extended Object Tracking

- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking Toolbox[™] Automated Driving Toolbox[™] Updated **R2019b**



Evaluate tracking performance

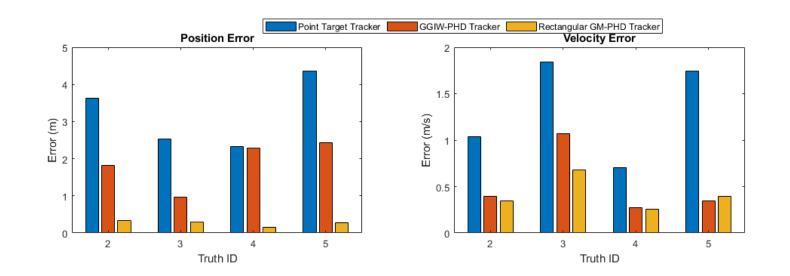
Extended Object Tracking

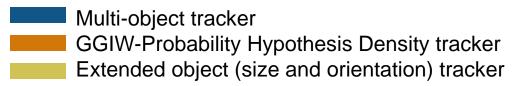
- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking ToolboxTM Automated Driving ToolboxTM Updated **R2019b**

Multi-object tracker

GGIW-Probability Hypothesis Density tracker Extended object (size and orientation) tracker

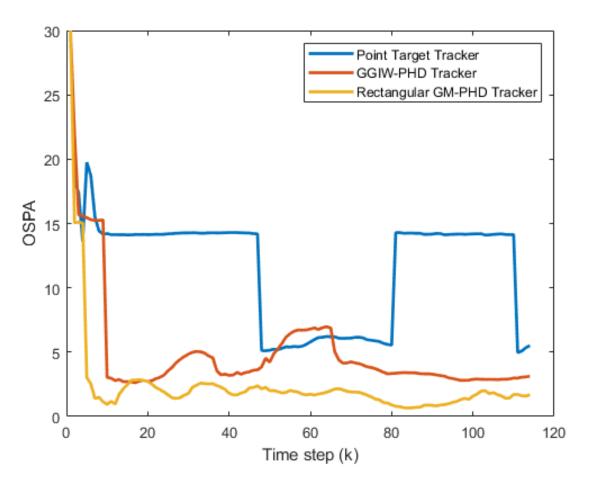



Evaluate error metrics

Extended Object Tracking

- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking ToolboxTM Automated Driving ToolboxTM Updated R2019b



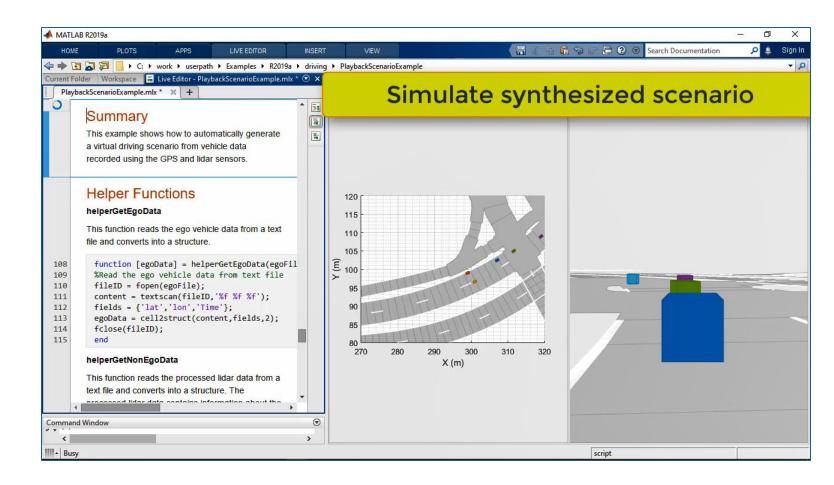
Evaluate OSPA metrics

Extended Object Tracking

- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking ToolboxTM Automated Driving ToolboxTM Updated **R2019b**

Multi-object tracker GGIW-Probability Hypothesis Density tracker Extended object (size and orientation) tracker



Synthesize driving scenarios from recorded data

Scenario Generation from Recorded Vehicle Data

- Visualize video
- Import OpenDRIVE roads
- Import GPS
- Import object lists

Automated Driving Toolbox[™] R2019a

How can I design with virtual driving scenarios?

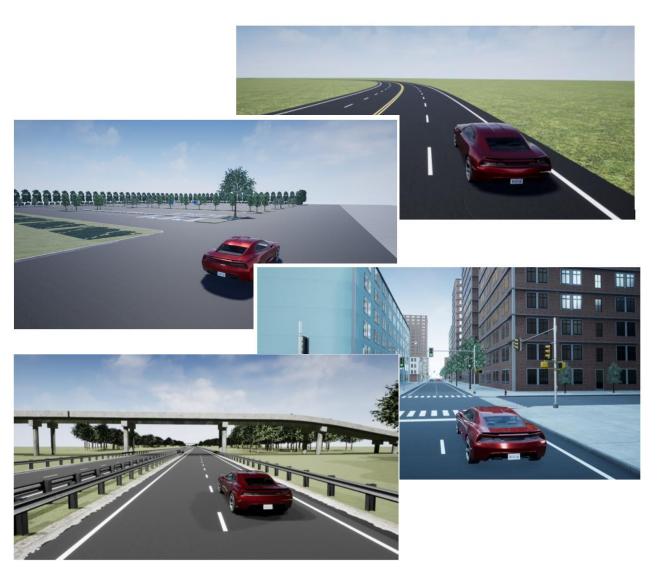
Scenes	Cuboid
	Ego-Centrix View Scenario Carros
Testing	Controls, sensor fusion, planning
Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)
Sensing	Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)

3D Simulation (Unreal Engine)

Controls, sensor fusion, planning, perception

Unreal Engine Editor

Probabilistic radar (detection list) Monocular camera (image, labels, depth) Fisheye camera (image) Lidar (point cloud)

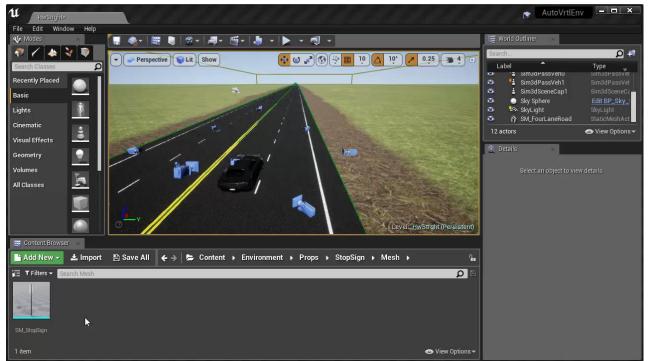


Select from prebuilt 3D simulation scenes

3D Simulation for Automated Driving

- Straight road
- Curved road
- Parking lot
- Double lane change
- Open surface
- US city block
- US highway
- Virtual Mcity

Automated Driving Toolbox[™] R2019b



Customize 3D simulation scenes

Support Package for Customizing Scenes

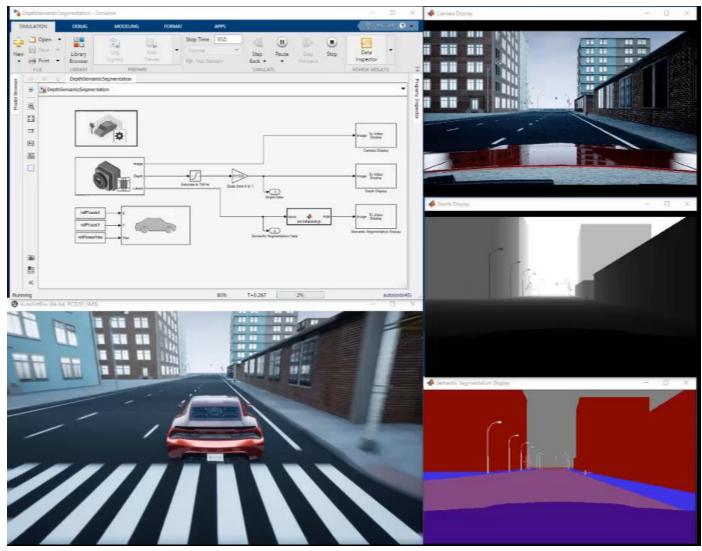
- Install Unreal Engine
- Set up environment and open Unreal Editor
- Configure configuration Block for Unreal Editor co-simulation
- Use Unreal Editor to customize scenes
- Create an Unreal Engine project executable file

Vehicle Dynamics BlocksetTM

Model sensors in 3D simulation environment

3D Simulation for Automated Driving

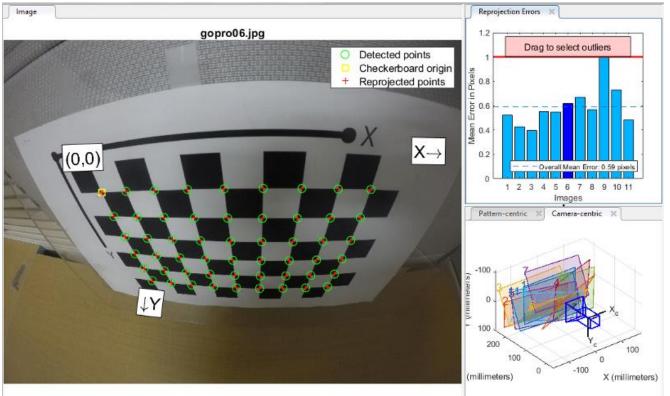
- Monocular camera
- Fisheye camera
- Lidar
- Probabilistic radar


Synthesize monocular camera sensor data

Visualize Depth and Semantic Segmentation Data in 3D Environment

- Synthesize RGB image
- Synthesize depth map
- Synthesize sematic segmentation

Automated Driving ToolboxTM



Calibrate monocular camera model

Single Camera Calibrator App

- Prepare the Pattern, Camera, and Images
- Add Images and Select Camera Model
- Calibrate
- Evaluate Calibration Results

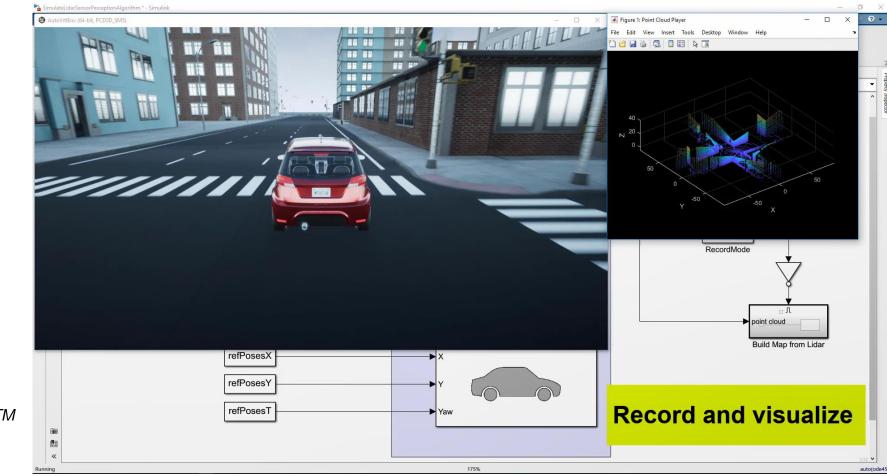
Computer Vision Toolbox[™] R2013b

Synthesize fisheye camera sensor data

Simulate a Simple Driving Scenario and Sensor in 3D Environment

- Explore camera model (Scaramuzza)
- Configure distortion center, image size and mapping coefficients
- Visualize results

Automated Driving Toolbox[™] R2019b

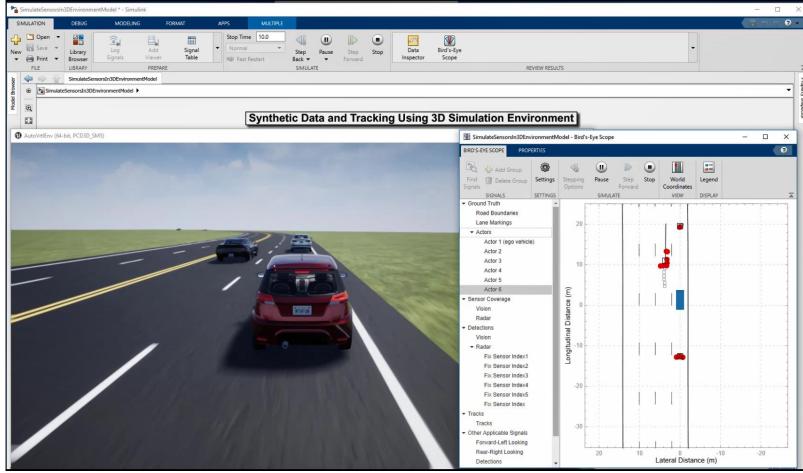


Synthesize lidar sensor data

Simulate Lidar Sensor Perception Algorithm

- Record and visualize
- Develop algorithm
- Build a 3D map
- Use algorithm within simulation environment

Automated Driving Toolbox[™] R2019b

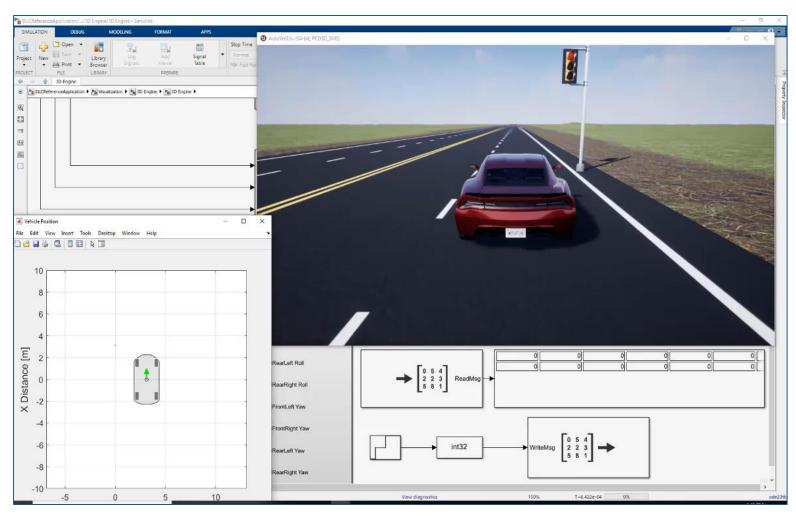


Synthesize radar sensor data

Simulate Radar Sensors in 3D Environment

- Extract the center locations
- Use center location for road creation using driving scenario
- Define multiple moving vehicles
- Export trajectories from app
- Configure multiple probabilistic radar models
- Calculate confirmed track

Automated Driving Toolbox[™] R2019b


Communicate with the 3D simulation environment

Send and Receive Double-Lane Change Scene Data

- Simulation 3D Message Set
 - Send data to Unreal Engine
 - Traffic light color
- Simulation 3D Message Get
 - Retrieve data from Unreal Engine
 - Number of cones hit

Vehicle Dynamics BlocksetTM

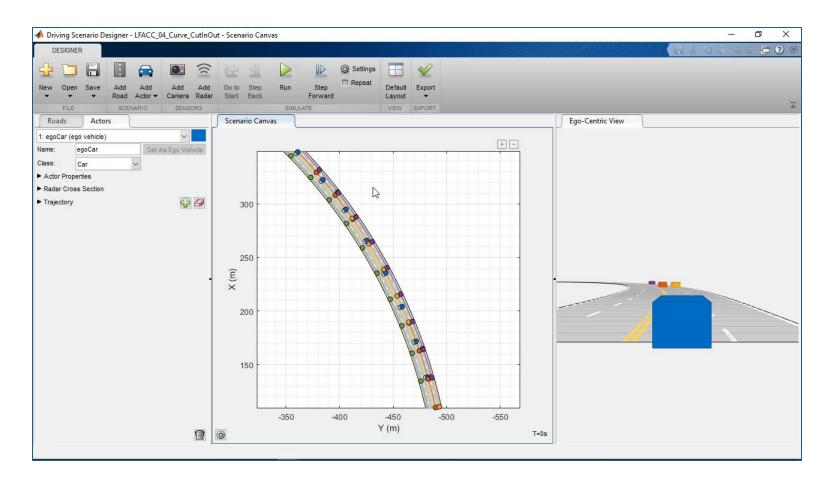
How can I design with virtual driving scenarios?

Scenes	Cuboid	3D Simulation (Unreal Engine)
	Ego-Centris View Scenario Carros	
Testing	Controls, sensor fusion, planning	Controls, sensor fusion, planning, perception
Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)	Unreal Engine Editor
Sensing	Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)	Probabilistic radar (detection list) Monocular camera (image, labels, depth) Fisheye camera (image) Lidar (point cloud)

MathWorks Simulation Challenge

for SAE AutoDrive year 3 competition

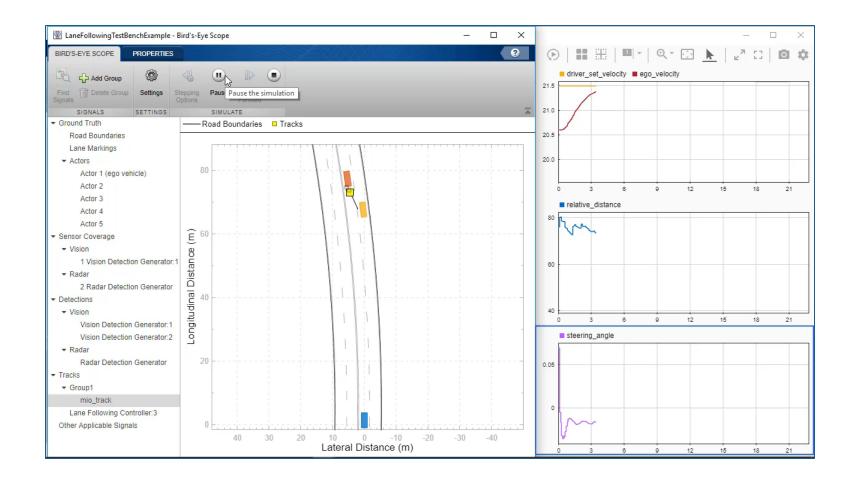
#	Task	Points				
1	Synthesize data to test open loop perception algorithm					
2	 Synthesize data to test closed loop controls algorithm a. What <u>algorithm</u> did you test and why did you chose it? (i.e. lateral controls, longitudinal controls, decision logic, planning) b. How did you <u>synthesize scenarios</u>? (i.e. Unreal Engine, Driving Scenario Designer, sensors, vehicle dynamics, customizations) c. How did you <u>assess correctness</u> of the algorithm? (i.e. specify expected behavior, assess metrics, automated testing) 	10				
3	Generate code from controls algorithm	10				
4	Innovate	15				
5	Reflect	5				


Integrate driving scenario into closed loop simulation

Lane Following Control with Sensor Fusion

- Integrate scenario into system
- Design lateral (lane keeping) and longitudinal (lane spacing) model predictive controllers
- Visualize sensors and tracks
- Generate C/C++ code
- Test with software in the loop (SIL) simulation

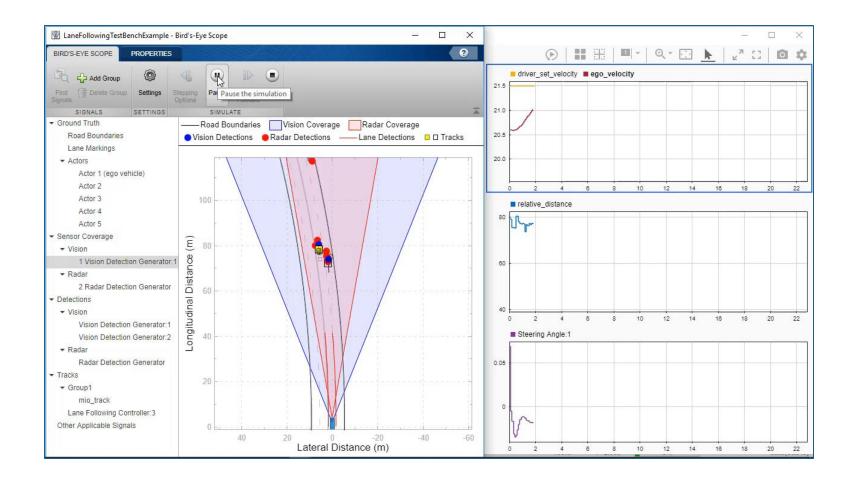
Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Embedded Coder[®]


Design lateral and longitudinal controls

Lane Following Control with Sensor Fusion

- Integrate scenario into system
- Design lateral (lane keeping) and longitudinal (lane spacing) model predictive controllers
- Visualize sensors and tracks
- Generate C/C++ code
- Test with software in the loop (SIL) simulation

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Embedded Coder[®]


Visualize sensor detections and tracks

Lane Following Control with Sensor Fusion

- Integrate scenario into system
- Design lateral (lane keeping) and longitudinal (lane spacing) model predictive controllers
- Visualize sensors and tracks
- Generate C/C++ code
- Test with software in the loop (SIL) simulation

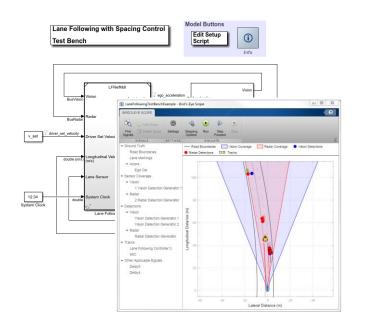
Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Embedded Coder[®]

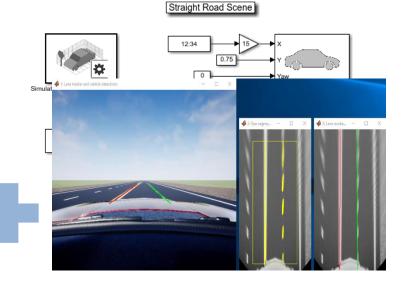
Automate testing against driving scenarios

Lo

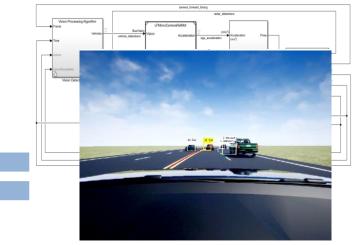
Testing a Lane Following Controller with Simulink Test

- Author high level requirements
- Synthesize driving scenarios
- Specify assessment criteria
- Run interactive simulation
- Automate regression testing
- Review verification status


Simulink TestTM Automated Driving ToolboxTM Model Predictive Control ToolboxTM



Test Manager								– o ×		
TESTS						SS MUSIC	804			
	🖌 Cut 🕅 📄		0000		(0			
	6 Cut 🗊 👂	> 🛄 🕷			📑 🛃 Impo	nt 🍄	?			
v Open Save	Delete Ru Paste	n Stop Debu	ug Parallel	Report Visualize	Highlight Expo	Preferences	Help			
FILE	EDIT	RUN		RE	ESULTS	ENVIRONMENT #	RESOUR	CES		
Test Brow	ser Results and Artifact	ts	ACC IS	O TargetDiscrir	minationT ×	Start Page 🗙				
	r tags, e.g. tags: test		DESCR			and age in			*	
LaneFollowingTe			▼ REQUI	REMENTS*						
Caller onoring to Scenarios	2010-001101/02									
	_TargetDiscriminationTest		scer	scenariold #1: ACC_ISO_TargetDiscriminationTest (LaneFollowingTestRequirements#1)						
	AutoRetargetTest							🕂 Add 👻 📋 Delete		
ACC ISO			♥ SYSTE	M UNDER TES	ST*			?		
ACC_Sto	-									
E LFACC_D	oubleCurve_DecelTarget		Model: LaneFollowingTestBenchExample							
E LFACC_D	oubleCurve_AutoRetarget		▶ TEST HARNESS							
E LFACC_D	oubleCurve_StopnGo	·	SIMULATION SETTINGS OVERRIDES*							
E LFACC_C	Curve_CutInOut									
E LFACC_C	Curve_CutInOut_TooClose		-	n mining						
			File Ed	at Display	/ Analysis F	ceport Help				
			1			A 1 140 1	(4)	6 6 5	1 0	C ⁴
					-	-				
			View	Requiremen	nts 👩				Canada	
			View:	requiremen	115				Search	
			Index			ID		Summary	Verified	
			🔻 🛐 Lar	neFollowing	TestRequiren	n				
PERTY	VALUE			1		scenario	ld	ACC_ISO_TargetDiscriminatio.		
me	ACC_ISO_Tar	getDiscri		2				ACC_ISO_AutoRetargetTest		
e	Simulation Test		6	3				ACC_ISO_CurveTest		
del	LaneFollowingTest	BenchEx	Di	4				ACC_StopnGo		
ulation Mode	C:\02_ADST\2018	h\Demos\		5				LFACC_DoubleCurveDecelTa.		
abled	C.102_ADS1/2018	0.0011031						LFACC_DoubleCurve_AutoRe.	A CONTRACTOR OF THE OWNER OWNER OWNER OF THE OWNER OWNE	
rarchy	LaneFollowingTest	Scenario		6					State and state and state and state	
ļS	Type comma or sp	ace separat		7				LFACC_DoubleCurveStopnGo		
				8				LFACC_Curve_CutInOut		
				9		scenario	ld	LFACC_Curve _CutInOut_Too.		



Synthesize scenarios to test your design

Lane Following with Mono Camera Detector Test Bench

Lane Following Control with Sensor Fusion

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Embedded Coder[®]

Design of Lane Marker Detector in 3D Simulation Environment

Automated Driving Toolbox[™] R2019b

Lane-Following Control with Monocular Camera Perception

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Vehicle Dynamics Blockset[™]

Simulate controls with perception

Lane-Following Control with Monocular Camera Perception

- Author target vehicle trajectories
- Synthesize monocular camera and probabilistic radar sensors
- Model lane following and spacing control in Simulink
- Model lane boundary and vehicle detectors in MATLAB code

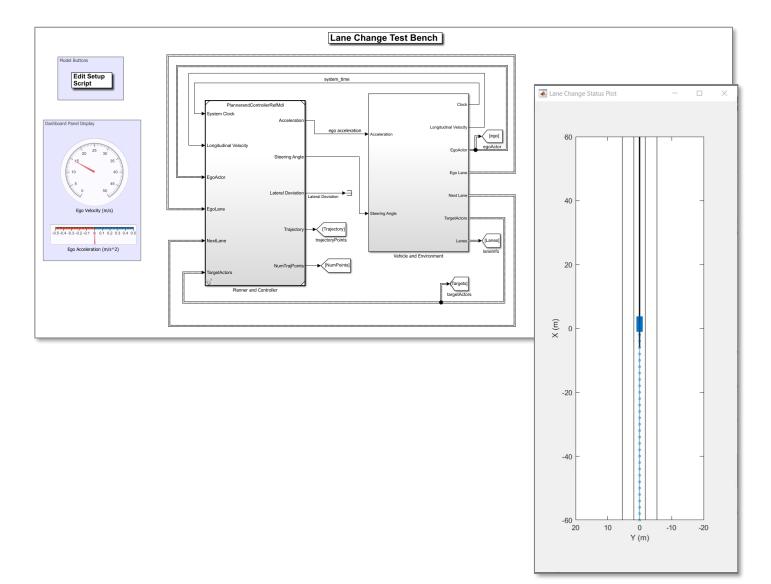
Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Vehicle Dynamics Blockset[™] Updated **R2019**

Visualize logged simulation detection and camera data

Lane-Following Control with Monocular Camera Perception

- Author target vehicle trajectories
- Synthesize monocular camera and probabilistic radar sensors
- Model lane following and spacing control in Simulink
- Model lane boundary and vehicle detectors in MATLAB code

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Vehicle Dynamics Blockset[™] Updated R2019b



Design highway automated lane change maneuver

Lane Change for Highway Driving

- Find most important objects
- Generate optimal trajectory for collision-free lane change
- Extract path from trajectory
- Follow path with Model Predictive Control (MPC)

Navigation ToolboxTM Model Predictive Control ToolboxTM Automated Driving ToolboxTM

for SAE AutoDrive year 3 competition

#	Task	Points
1	Synthesize data to test open loop perception algorithm	10
2	Synthesize data to test closed loop controls algorithm	10
3	 Generate code from controls algorithm a. What <u>algorithm</u> did you choose to generate code and why did you chose it? (i.e. lateral controls, longitudinal controls, decision logic, planning) b. Did you run <u>software in the loop (SIL)</u> simulation and what insight did you gain? (i.e. equivalent numeric results, measured execution time, code coverage) c. Did you <u>integrate and assess</u> the generated code running in your vehicle and what insight did you gain? (i.e. C++, ROS node, assessment of functionality compared with simulation) 	10
4	Innovate	15
5	Reflect	5

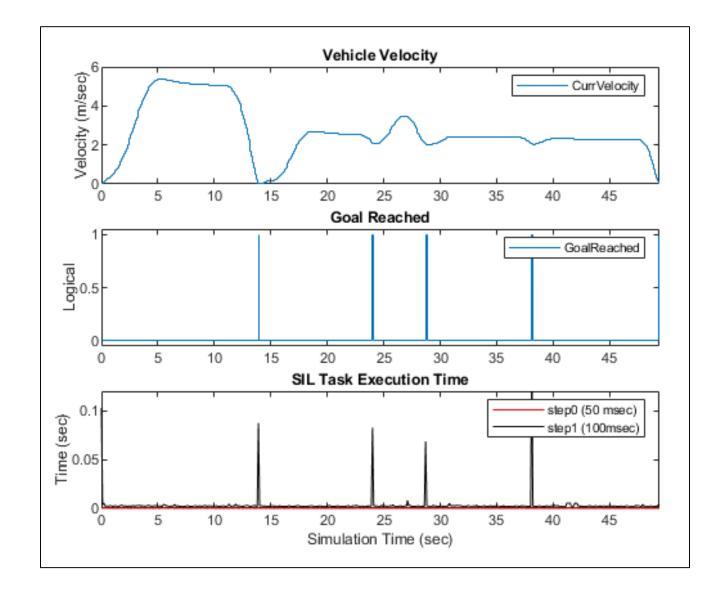
Generate C/C++ code for path planner and controller

<u>Code Generation for Path</u> <u>Planning and Vehicle Control</u>

- Simulate system
- Configure for code generation
- Generate C/C++ code
- Test using Software-In-the-Loop
- Measure execution time of generated code

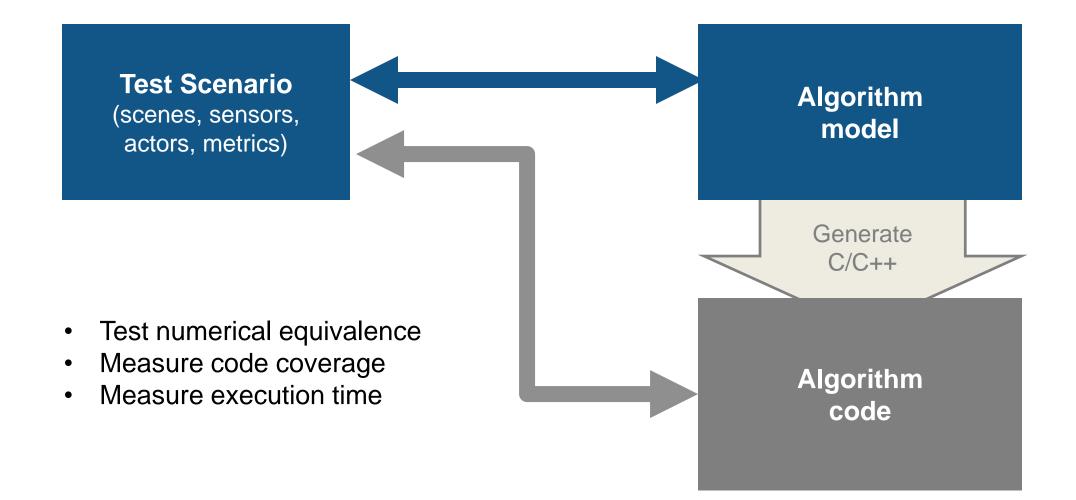
Automated Driving Toolbox[™] Embedded Coder R2019c

187	// model step function	
188	void step0();	p0 = 50 msec rate
189		$p_1 = 100 \text{ msec rate}$
190	// model step function	
191	<pre>void step1();</pre>	
192		
193	<pre>// model terminate function</pre>	
194	<pre>void terminate();</pre>	
195		
196	// Constructor	
197	AutomatedParkingValetModelClass();	
198		
199	// Destructor	
200	~AutomatedParkingValetModelClass();	5
201		
202	<pre>// Root inport: '<u><root>/Costmap</root></u>' set metho</pre>	d
203	<pre>void setCostmap(costmapBus localArgInput);</pre>	Methods to access
204		
205	// Root inport: ' <u><root>/GoalPose</root></u> ' set meth	inputs and outputs
206	<pre>void setGoalPose(real_T localArgInput[3]);</pre>	



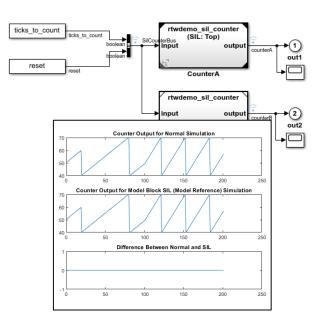
Measure execution time of generated code

<u>Code Generation for Path</u> <u>Planning and Vehicle Control</u>

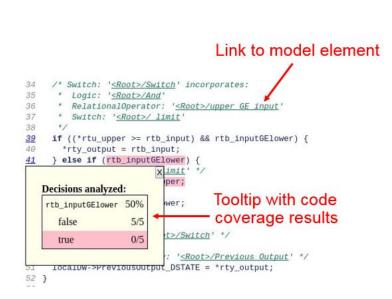

- Simulate system
- Configure for code generation
- Generate C/C++ code
- Test using Software-In-the-Loop
- Measure execution time of generated code

Automated Driving Toolbox[™] Embedded Coder R2019c

Evaluate generated code with software-in-the-loop (SIL) simulation



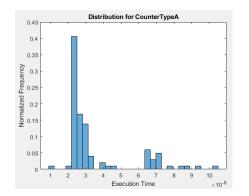
Evaluate generated code with software-in-the-loop (SIL) simulation


Measure

code coverage

Test numerical equivalence

Software-in-the-Loop Simulation Embedded Coder®



Code Coverage for Models in Software-in-the-Loop (SIL) Mode Embedded Coder®

Profile code execution time

2. Profiled Sections of Code

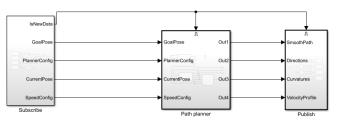
Section	Maximum Execution Time in ns	Average Execution Time in ns
[+] <u>rtwdemo_sil_topmodel_initialize</u>	80	80
[+] rtwdemo_sil_topmodel_step [0.1 0]	358	129

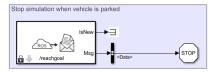
View and Compare Code Execution Times Embedded Coder®

Deploy to ROS node

Generate standalone ROS node

Configuration Parameters: RobotController/Configuration (Active)					
★ Commonly Used Parameters	≡ All Parameters				
Select: Solver Data Import/Export Diagnostics Hardware Implementation Model Referencing Simulation Target D Code Generation Simulink Coverage HDL Code Generation	Hardware board: Robot Operating System (ROS) Code Generation system target file: ert.tlc Device vendor: Generic Device details Hardware board settings Operating system options Base rate task priority: 40				
	Target Hardware Resources				

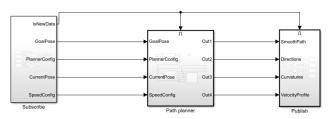

Generate a Standalone ROS Node from Simulink ROS Toolbox™

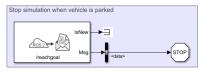

Embedded Coder®

R2019**b**

Generate ROS nodes for parking valet

Automated Parking Valet: ROS node for Path Planner


Automated Parking Valet with ROS in Simulink


ROS Toolbox[™] Embedded Coder[®]

Generate ROS 2.0 nodes for parking valet

Automated Parking Valet: ROS 2 node for Path Planner

Automated Parking Valet with ROS 2 in Simulink ROS ToolboxTM Embedded Coder[®]

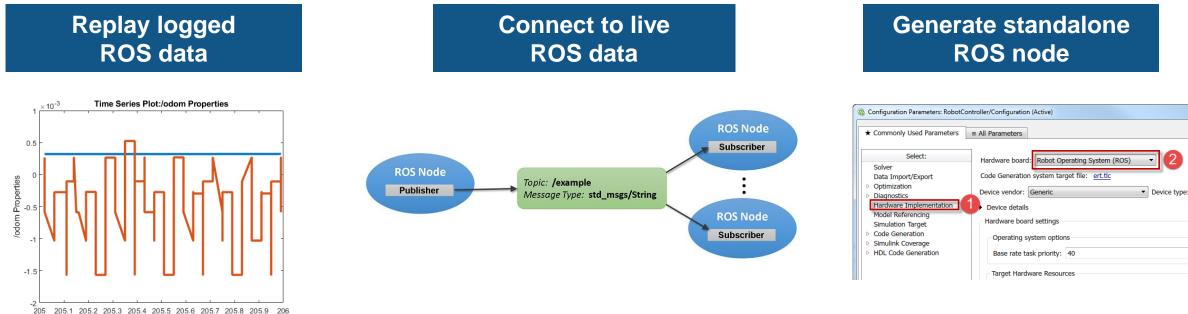
for SAE AutoDrive year 3 competition

#	Task	Points
1	Synthesize data to test open loop perception algorithm	10
2	Synthesize data to test closed loop controls algorithm	10
3	Generate code from controls algorithm	10
4	 a. What did you do with MathWorks tools that <u>differentiates</u> you from other teams? (i.e. Analyze recorded ROS/CAN data, label recorded data, train deep learning network, build a custom App, share work through projects with revision control) b. What <u>insight</u> did you gain while doing this? 	15
5	Reflect	5

Connect to CAN and CAN-FD data

CAN platform support

- Connect to live data
- Read logged data


Vehicle Network Toolbox[™] Updated **R2019b**

Vendor	Windows®	Linux®
MathWorks [®] virtual channels	\checkmark	\checkmark
Vector	\checkmark	
PEAK-System	\checkmark	\checkmark
Kvaser	\checkmark	\checkmark
National Instruments®	\checkmark	

File Format	Windows	Linux
BLF	\checkmark	
CDF	\checkmark	\checkmark
MDF	\checkmark	

Integrate with ROS 1.0 and ROS 2.0

05.1 205.2 205.3 205.4 205.5 205.6 205.7 205.8 Time (seconds)

Work with rosbag Logfiles ROS ToolboxTM

R2019b

Exchange Data with ROS Publishers and Subscribers ROS Toolbox[™]

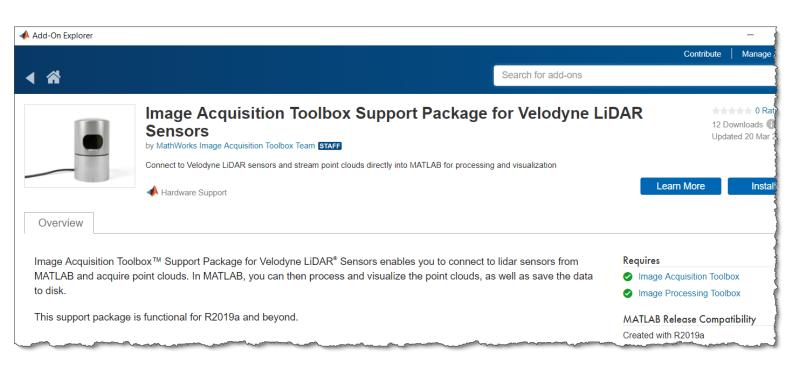
Generate a Standalone ROS 2 Node from Simulink ROS Toolbox™

Simulink Coder™

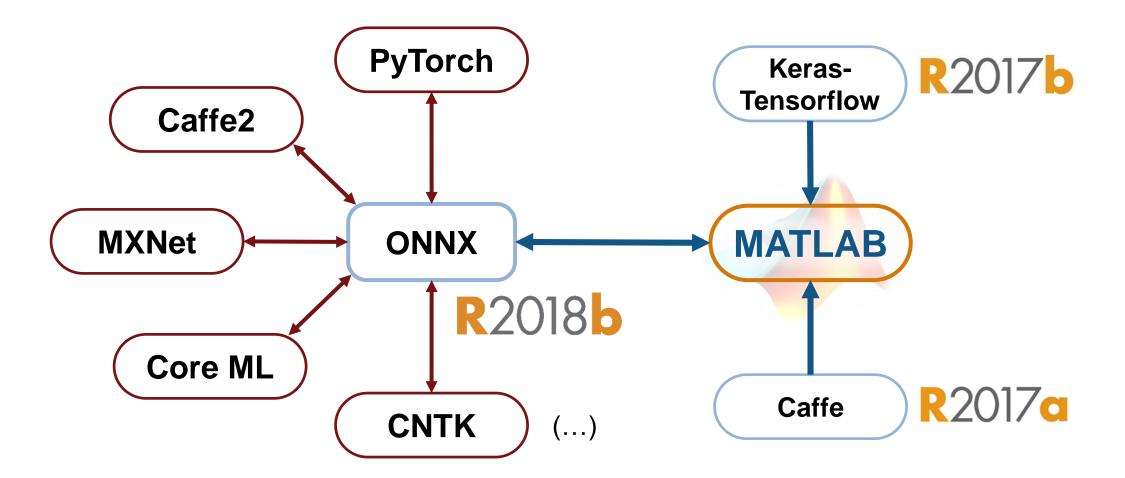
Read point cloud from Velodyne log file

fillo

MathWorks[®]


- Read point cloud data from Velodyne packet capture (PCAP) file
- The reader supports the following Velodyne LiDAR models:
 - VLP-16, Puck LITE, Puck Hi-Res, VLP-32C, HDL-32E, and HDL-64E
 - VLS-128 support package is available per request
- User can provide device specific calibration XML file

veloReader = velodyneFileReader(fileName,deviceModel,'CalibrationFile',calibFile);


Stream live Velodyne point cloud data

- You can connect to and stream point clouds from the following Velodyne LiDAR models:
 - HDL-32E sensor
 - VLP-32C Ultra Puck sensor
 - VLP-16 Puck sensor
 - VLP-16 Puck Lite sensor
 - VLP-16 Puck Hi-Res sensor

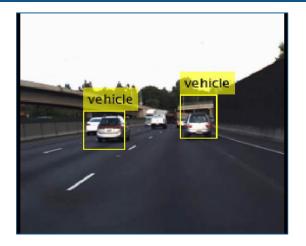
Interoperate with neural network frameworks

Open Neural Network Exchange

Design vision perception systems


Label recorded data

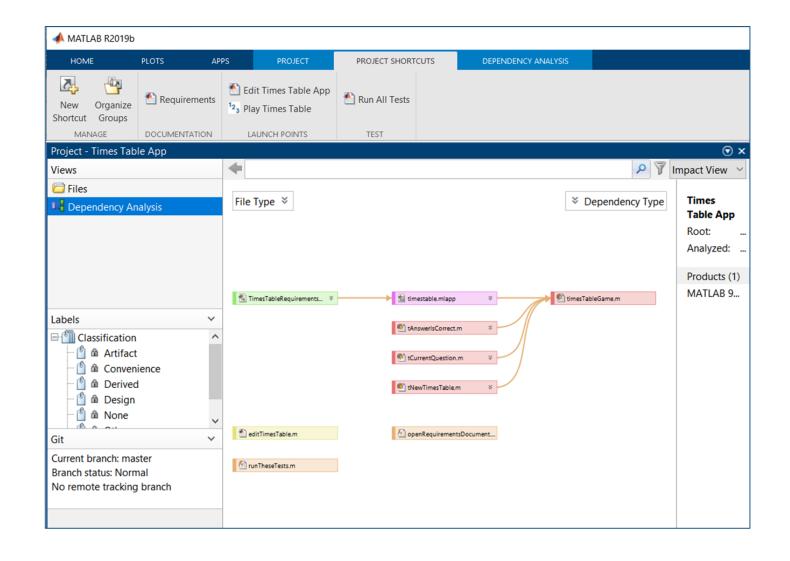
Get Started with the Ground <u>Truth Labeler</u> Automated Driving ToolboxTM Computer Vision ToolboxTM


Train deep learning networks

Object Detection Using YOLO v2 Deep Learning Computer Vision ToolboxTM Deep Learning ToolboxTM

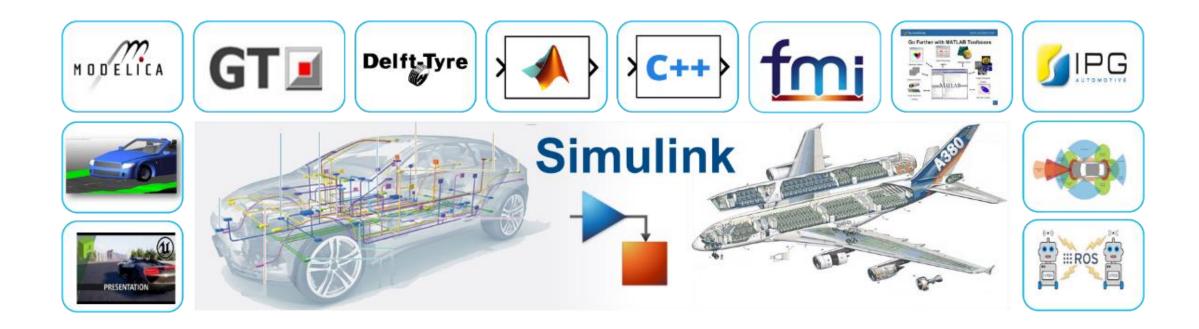
Generate code

Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN Deep Learning Toolbox[™] MATLAB Coder

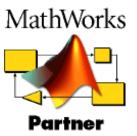

R2019a

Organize your work and collaborate with projects

Explore an example project


- View, search, and sort files
- Run frequently used files
- Integrate with source control
- Review changes
- Analyze dependencies
- Commit modified files

MATLAB® **R2019**



Connect to third party tools

152 Interfaces to 3rd Party Modeling and Simulation Tools (as of March 2019)

for SAE AutoDrive year 3 competition

#	Task	Points
1	Synthesize data to test open loop perception algorithm	10
2	Synthesize data to test closed loop controls algorithm	10
3	Generate code from controls algorithm	10
4	Innovate	15
5	 Reflect a. Would you do something <u>different next time</u>? b. Is there anything <u>missing</u> from the tools that would have helped you? 	5

for SAE AutoDrive year 3 competition

#	Task	Points
1	Synthesize data to test open loop perception algorithm	10
2	Synthesize data to test closed loop controls algorithm	10
3	Generate code from controls algorithm	10
4	Innovate	15
5	Reflect	5

Additional clarification of tasks and scoring will be provided at November training