
Localization Overview

Guy Stoppi

April 2019

0 Contents

1. Explanation of Localization’s Tasks

2. HD Map Parsing

3. lane_publisher node - HD Map Interfacer

1 Explanation of Localization’s Tasks

In Winter of 2019, the Localization subteam was expected to 1) estimate the car’s location and generate a
costmap of its surroundings and 2) interface with the HD map of the competition track.
Estimating the car’s location and costmap generation was mainly done with Google Cartographer (which

was decided to be used last semester) with the LIDAR, IMU, and GPS. It was also suggested to use the
HD map and the perception lane line detection to improve localization, which would require using a sec-
ond sensor fusion algorithm robot_localization. Unfortunately, due to overlap with how Cartographer
and robot_localization publish their output, we ended up only using Cartographer. Cartographer also
generates a costmap of the surroundings.
Localization’s task with the HD map has changed quite a few times over the semester and, as of April 25,

we’re working on publishing all of the lane lines near the car and describing if they’re turning left or turning
right. This is quite a complicated task; it includes parsing the protobuf files into usable text files and then,
in real time, fetching and tagging lane lines near the car.

2 HD Map Parsing

The HD maps are in HERE format. Here’s the format specification:
https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-format.html
We use the lane model. Refer to ”lane parse.py” in the ”hdmap processing/scripts” folder of the localization

repository. The lane file consists of a series of lane geometries, all defined by HERE’s method of storing a
polyline (i.e. a line defined by an array of points). Each of these lane lines makes up either an actual lane
line on the road or an artificial lane line in an intersection that describes the ideal trajectory of the car when
”using” that lane.
HERE’s method of storing a polyline is very obtuse. Read the following links:

https://developer.here.com/olp/documentation/hd-live-map/topics/hd-map-coordinate-encoding.html
https://developer.here.com/olp/documentation/hd-live-map/topics/hd-map-coordinate-array-offset-encoding.html
Essentially, each lat-long coordinate is stored in a single number. To convert from that number X you do

the following:

B = to_binary(X)

every other bit starting with the second bit

lon = to_decimal(B[1::2]) * (360.0 / 2^32)

1

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-format.html
https://developer.here.com/olp/documentation/hd-live-map/topics/hd-map-coordinate-encoding.html
https://developer.here.com/olp/documentation/hd-live-map/topics/hd-map-coordinate-array-offset-encoding.html

every other bit starting with the third bit

lat = to_decimal(B[2::2]) * (180.0 / 2^31)

Now, when storing polylines, HERE map stores every point as an offset from the previous point using the
XOR operation. So to decode:

prevB = ... # binary value of previous coordinate

B = XOR(prevB, to_binary(X))

lon = to_decimal(B[1::2]) * (360.0 / 2^32)

lat = to_decimal(B[2::2]) * (180.0 / 2^31)

Using these decode methods, we can generate a series of lane lines which can be used by our nodes running
on the car. Note that these lane lines must be separated into ”intersection lines” (artificial lane lines in an
intersection) and ”road lines” (actual lane lines) because of lane publisher.

3 lane publisher node - HD Map Interfacer

The lane publisher node loads the lane lines (parsed using above) and searches through them to find the
closest ones (all lanes within a certain radius). If these lane lines are artifical lane lines from an intersection,
it will tag them as ”turning left”, ”straight”, or ”turning right”.
Searching through the lane lines is pretty simple: find the lane line’s closest point to the car and, if the

point is within a certain radius, return the lane line.
Tagging them takes more work. Although it’s possible this methodology will change, the current method

requires the lane lines to be translated into the car’s local coordinate system.
The math behind this uses matrix multiplication and 2D rotational matrices. Suppose we have two 2D

coordinate systems: the global one, G, and the local one, C. In our HD map case, G is the coordinate
system for the HD map and C is the car’s coordinate system. For now, we assume that C’s origin is always
at G’s origin and so C is only different than G by its rotation θ. So we have that, for a point L = (Lx,Ly)
defined in C and is equivalent to the point P = (Px, Py) in G:[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
·
[
Lx
Ly

]
=

[
Px
Py

]
⇒

[
Lx
Ly

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
Px
Py

]
The first matrix was obtained by the definition of a 2D rotational matrix and the second was obtained by

taking the inverse of the first. So this allows us to translate a point in a lane line to the car’s coordinate
system IF the car is at (0,0). To get around this condition, we simply subtract the car’s map coordinates
from the lane point. This will translate the lane point into a coordinate system that isn’t rotated relative
to the global map’s coordinate system but has the car at (0,0). We then apply the above transformation to
get the lane point in the car’s coordinate system.
Once we have all of the lane points in the car’s coordinate system, we can observe how the lane is defined

relative to the car to describe it as ”turning left”, ”straight”, or ”turning right”. We do this by taking
the closest lane point and the furthest lane point and comparing how far to the left/right they are. If the
furthest lane point is much further to the left than the closest lane point, then we say the lane ”turns left”.
If the furthest lane point is much further to the right than the closest lane point, then we say the lane ”turns
right”. Otherwise, we say the lane is ”straight”.
We collect all the lanes (which are tagged if they’re in an intersection) which are within a certain radius of

the car and publish them.

2

	Contents
	Explanation of Localization's Tasks
	HD Map Parsing
	lane_publisher node - HD Map Interfacer

